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CHAPTER 1: WHAT IS PROBABILITY?

T
HE RANGER WAS SENT OUT TO

scout an invading horde
of monsters. There were three
possibilities: the horde was either

large, huge, or massive. Given that each of
these possibilities were equally likely, what
was the chance that the horde was
massive1?

PROBABILITY & LOGIC
In logic, statements are either true or false,
and there is no in between. To make
things numerical, a true statement can be
assigned a value of 1, and a false
statement a value of 0. But in reality,
things are not always so clear cut. Instead,
it is helpful to have numbers between 0
and 1 that represent the information that
is available about the truth of the
statement.

So a probability that a statement is true
could be 10%, or 65%, or 1/e, or any other
number from 0 to 1. The statement itself is
either true or false, what the probability
represents is the information about the
two possibilities.

TRUE AND FALSE

The idea of true and false will come up
often enough that it is good to have
notation for them. In this text, T will stand
for true, and F will stand for false.
Anything in mathematics that evaluates to
be either T or F is called a logical
statement.

D1 A logical statement is any statement that is
either T or F.

The statement was preceded by D1 to
indicate that this was our first definition.
Other special statements will be preceded
by F for facts, E for examples, and T for
theorems.

INDICATOR FUNCTIONS

A function can be defined more formally,
but it is helpful to think of it as an

operation that transforms values into other
values. One of the simplest functions is
the indicator function. The indicator
function (often denoted I), transforms T
into a 1 and F into a 0.

D2 The indicator function is defined as

I(T) = 1

I(F) = 0.

E1 What is I(3 < 5)? What is I(3 < 1)?
Answer. The statement (3 < 5) is true, so I(3 <

5) = 1 . The statement (3 < 1) is false, so I(3 <

1) = 0 .

E2 What is I(x2 + 5 > 4)?
Answer. No matter what x is, (x2 ≥ 0) and (x2 +

5 > 4), so I(x2 + 5 > 4) = 1 .

For example I(3 < 5) = 1 and I(3 < 1) = 0
since the statement 3 < 5 is true but 3 < 1
is false.

A nice thing that will come in handy
later, is that if there are multiple logical
statements involved, indicator functions
can be used to count how many of the
statements are true. For instance,

I(3 < 5) + I(3 < 1) + I(7 < 2) = 1 + 0 + 0 = 1,

and exactly one of the statements

(3 < 5), (3 < 1), (7 < 2)

is true.
This fact can be written more generally.

F1 If s1, . . . , sn are a finite set of statements, then

I(s1) + · · ·+ I(sn)

counts how many of the statements are true. That
is,

#(i : si = T) =
n∑

i=1

I(si).

A fact such as this needs a proof so that
a user can be sure that it is correct.
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Proof. Use mathematical induction on the
number of statements n. For the base case
of n = 1, if s1 = T then I(s1) = 1, and if s1 =
F then I(s1) = 0. Either way I(s1) counts the
number of true statements in the set.

The induction hypothesis is that the fact
holds for n statements. Now consider
statements s1, . . . , sn+1. Since {1, . . . , n} and
{n + 1} are disjoint sets (they have no
elements in common), the number of
statements that are true equals the
number of statements si for i from 1 to n
that are true, with a 1 added if and only if
the statement sn+1 is true.

By the induction hypothesis, the number
of s1, . . . , sn that are true is

∑n
i=1 I(si), and

then adding I(sn+1) adds 1 to this total if
and only if sn+1 is true. Hence the total is[

n∑
i=1

I(si)

]
+ I(sn+1) =

n+1∑
i=1

I(si),

and the induction is complete.

E3 If
∑10

i=1 I(bi) = 7, how many of b1, . . . , b10 are
true?
Answer. Since the sum of the indicators is 7, exactly
7 must be true.

In the story of the Ranger from the
beginning of the chapter, the size of the
horde could be either large, huge, or
massive. The events large,huge,massive
are disjoint or mutually exclusive, meaning
that at most one of the possibilities can be
true at any one time. Using indicator
function, this idea can be more clearly
expressed.

D3 A set of statements {s1, . . . , sn} are disjoint
(aka mutually exclusive) if

n∑
i=1

I(si) ≤ 1.

PROBABILITY FUNCTIONS

While indicator functions are great if the
truth or falsehood of a statement is known
precisely, there are many instances where
it is not. For example, something might

not have happened yet, like the next
Presidential election in the United States.

Or the statement could be about a
physical system where small changes in
the initial values lead to big changes over
time. Flipping coins and rolling dice fall
into this category.

Another possibility is that the
information is too expensive to obtain
exactly. For instance, determining the
exact number of people living in a major
city can be very difficult to obtain.

A probability function assigns some
logical statements a number from 0 up to
1 that indicates the knowledge about the
truth of the statement. Usually P will be
used to denote this function. As with
indicator functions, P(T) = I(T) = 1, and
P(F) = I(F) = 0, but a probability function
can also have P(s1) = 0.3 or P(s2) = 5/17 for
statements s1 and s2. When it is possible
to assign a probability to a logical
statement, call the statement an event.

D4 If P(s) exists for a logical statement s, then s is
an event.

ASSIGNING
PROBABILITIES
In the Ranger’s story, each of the three
possibilities of large, huge, and massive for
the size of the horde were equally likely. If
the total amount of truth available is 1,
and there are three possibilities, then the
simplest way to divide the truth is evenly
among the three.

In other words, each of the three
possibilities should have 1/3 probability. In
general, this idea is known as the Principle
of Indifference.

D5 The Principle of Indifference says that if
exactly one of s1, . . . , sn must be true, and there is
no reason to believe that any one event is more
likely than another, then for each i, P(si) = 1/n.
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The Principle of Indifference
This was developed as an idea by Jakob Bernoulli
and Pierre-Simon Laplace in the 1800’s. It was
given the name Principle of Indifference by the
20th century economist John Maynard Keynes.

MATHEMATICAL
PROBABILITY
The events that are assigned probabilities
often involve sets, which are collections of
objects called elements.

SETS

If an object a is in the set S then write
(a ∈ S) = T and call a an element of S.
Otherwise (a ∈ S) = F, also written
(a /∈ S) = T, and a is not an element of S.

D6 Say that S is a set if for any object a, the
expression

a ∈ S

is a logical statement that is either T or false. If
(a ∈ S) = T, then a is an element of S.

Set terminology
Another way to read a ∈ S aloud is to say that S
contains the element a. Another term for a set is
a collection.

For instance, suppose that the set S has

(red ∈ S) = T

(green ∈ S) = T,

and no other objects than red or green are
elements of the set. Note that there is no
notion of an ordering of the objects red or
green, the two equations written in reverse
order would describe exactly the same set.

A shorter way to write this set is to set
set notation, where the elements of the set
are listed out and surrounded by curly
braces. So the same set could be written
as

S = {red, green}.

A special set is called the positive
integers. This set is usually denoted by

{1, 2, 3, . . .}.

COINS AND DICE

A simple probability experiment comes
from flipping a fair coin. A coin typically
has two sides, one labeled heads for
convenience, and the other side labeled
tails. If the coin is fair, then the Principle
of Indifference holds, and each side of the
coin is equally likely to come up when
flipped.

Figure 1.1: Copper coin minted in 1787
(https://artgallery.yale.edu/
collections/objects/170864).

Another simple probability experiment is
to roll a fair die. Die is the singular form,
and dice is the plural. One common type of
die has six sides, each of which is likely to
show on top when rolled.

Figure 1.2: Bone dice excavated from
Syria (https://artgallery.yale.edu/
collections/objects/6521).

CHAPTER 1: WHAT IS PROBABILITY?3

https://artgallery.yale.edu/collections/objects/170864
https://artgallery.yale.edu/collections/objects/170864
https://artgallery.yale.edu/collections/objects/6521
https://artgallery.yale.edu/collections/objects/6521


The notation d followed by a number
indicates the outcome of a roll of a fair die
with that number of sides. For instance, d6
indicates a roll of a die with sides labeled 1
through 6. So if X was the outcome of the
roll, it is always true that X ∈ {1, 2, 3, 4, 5, 6},
which can be written in shorthand as
X ∈ {1, 2, . . . , 6}.

Since this is always true, and true
statements have probability 1,
P(X ∈ {1, 2, . . . , 6}) = 1. Because the die is
fair, the Principle of Indifference applies,
and P(X = 4) = 1/6 since there are six
sides to the die.

Write X ∼ d6 to indicate that the value of
X comes from the roll of the six sided die.

E4 Suppose X ∼ d6 and Y ∼ d8. If the Principle
of Indifference holds, what is P((X,Y ) = (3, 2))?
Answer. There are six choices for X and eight
choices for Y . Hence there are 6 · 8 = 48 choices
for (X,Y ). That means that (assuming the Principle
of Indifference holds)

P((X,Y ) = (3, 2)) = 1/48.

This is about 0.02083 .

ENCOUNTERS
1. BASIC INDICATORS

What is I(42 > 10)?

2. MORE BASIC INDICATORS

What is I(x ≥ 0)?

3. BASIC PROBABILITIES

What is P(42 > 10)?

4. MORE BASIC PROBABILITIES

What is P(x ≥ 0)?

5. INDICATOR FUNCTIONS

Suppose f(x) = I(|x| > 4).
a. What is f(2)?
b. What is f(−2)?
c. What is f(5)?
d. What is f(−5)?

6. INDICATOR FUNCTION
FACTORS

Suppose g(x) = exp(−x)I(x ≥ 0).
a. What is g(2)?
b. What is g(−2)?
c. What is g(0)?

7. GRAPHING INDICATOR
FUNCTIONS

Indicator functions, when used to make
functions, can be graphed.
a. Suppose f(x) = I(|x| > 4). Graph f(x).
b. Suppose g(x) = (|x|/4)I(|x| > 4). Graph
g(x).

8. GRAPHING INDICATION
FUNCTION FACTORS

Graph h(x) = exp(−x)I(x ≥ 0).

9. DISJOINT REALS

Suppose X is a real number. State if the
following events are disjoint or not.
a. (X ≤ 3) and (X ≥ 4).
b. (X ≤ 5) and (X ≥ 3).
c. (X ≤ 3) and F.

10. DISJOINT INTEGERS

Suppose N is an integer. State if the
following events are disjoint or not.
a. (N = 3) and (N = 4).
b. (N = 3) and (N ≥ 3).
c. (N = 3) and (N = 4) and (N = 5).

11. TRUTH OR DARE?
What is P(10 < 20)?

12. TRUTH OR DARE,
ARITHMETIC EDITION

What is P(3 + 7 > 5)?

13. COUNTING TRUE
STATEMENTS

Suppose s1, s2, and s3 are disjoint
statements. What is the largest that
I(s1) + I(s2) + I(s3) can be?

14. ADDING INDICATORS

If
∑5

i=1 I(ai) = 4, how many of a1, a2, . . . , a5
are true?
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15. TWO DICE

If A is the roll of a fair six-sided die, (so
A ∼ d6) and B is the roll of a fair
four-sided die (so B ∼ d4), how many
different outcomes can there be for (A,B)?

16. THREE DICE

If a six-sided die is rolled three times to
give (D1, D2, D3), how many possible
combinations are there?

17. PRINCIPLE OF INDIFFERENCE

If A is the roll of a fair six-sided die, (so
A ∼ d6) and B is the roll of the fair
four-sided die (so B ∼ d4), what would
P((A,B) = (3, 1)) using the Principle of
Indifference?

18. PRINCIPLE OF INDIFFERENCE
FOR THREE DICES

If three fair six-sided dice are rolled, what
is the chance that all three rolls are 3
using the Principle of Indifference?
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CHAPTER 2: LOGICAL OPERATORS

T
HE RANGER STUDYING THE HORDE

of monsters believes that it either
contains a hippogriff or a bugbear
or both. What is the negation of

that statement?

MODIFYING LOGICAL
STATEMENTS
When calculating probabilities, it is often
useful to be able to tie together or break
apart logical statements into their pieces.
In order to accomplish this, it is necessary
to understand the main ways in which
logical statements can be connected.

LOGICAL OR
The logical OR operator is applied to a pair
of logical statements, and returns true
when either one or both of the statements
are true. The logical OR of p and q is
written p ∨ q. For instance,

(3 = 3) ∨ (3 < 4) = T

(3 = 3) ∨ (4 < 3) = T

(3 < 4) ∨ (6 = 8) = T

(4 < 3) ∨ (6 = 8) = F

This is equivalent to saying that the
logical OR is true when at least 1 of the
statements is true. This leads to the
following definition in terms of indicator
functions.

D7 The logical OR between statements s1 and s2
is

(s1 ∨ s2) = (I(s1) + I(s2) ≥ 1).

English versus CS
Computer scientists often capitalize the OR in
logical OR to distinguish it from the common use of
the word or in English. In English, or often means
that one or the other but not both are true. In
logical OR if both the statements are true, then the
logical OR is also true.

E5 State if the following are true or false:
a. (10 = 10) ∨ (3 < 4).

b. (10 = 11) ∨ (3 < 4).

c. (10 = 11) ∨ (4 < 3).

Answer. Consider the terms in the expressions.
a. Since (10 = 10) = T, the overall statement is

T .
b. Since (3 < 4) = T, the overall statement is

T .
c. Since both (10 = 11) and (4 < 3) are false,

the overall statement is F .

Since logical OR was defined using
addition, which is commutative, so is
logical OR.

F2 For logical statements s1 and s2,

s1 ∨ s2 = s2 ∨ s1.

This definition can be extended nicely to
any finite number of statements s1, . . . , sn,
or even to a countable sequence of
statements.

D8 The countable logical OR of s1, s2, . . . is( ∞∨
i=1

si

)
=

( ∞∑
i=1

I(si) > 0

)
.

LOGICAL AND
The logical AND of two statements s1 and
s2, written s1 ∧ s2, is true if and only if both
of the statements are true. For instance,

(3 = 3) ∨ (3 < 4) = T

(3 = 3) ∨ (4 < 3) = F

(3 < 4) ∨ (6 = 8) = F

(4 < 3) ∨ (6 = 8) = F

Logical OR corresponds to addition,
since ∨

si =
(∑

I(si) > 0
)
,

whereas logical AND is more like
multiplication, since∧

si =
(∏

I(si) > 0
)
.
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D9 The logical AND of s1, s2, . . . , sn is(
n∧

i=1

si

)
=

(
n∏

i=1

I(si) > 0

)
.

The countable logical AND of s1, s2, . . . is( ∞∧
i=1

si

)
=

( ∞∏
i=1

I(si) > 0

)
.

Notation for logical AND
Alternative notation for logical AND include placing
a comma between the statements, or just pushing
the statements together (as with multiplication.)

(s1 ∧ s2) = (s1, s2) = (s1s2).

LOGICAL NOT
The third major logical operator is logical
NOT, which is also called negation. What it
does is change a T to a F and a F to a T. It
can be defined (as with the other
operators) using indicator functions.

D10 The logical NOT (aka negation) of s1 is

(¬s) = (I(s) = 0).

Negation can be used to define the
complement of a set, the set of elements
not in the original set.

D11 The complement of a set A, written AC is
defined as

(x ∈ AC) = ¬(x ∈ A).

ORDER OF
OPERATIONS
When adding and multiplying numbers,
there is an order of operations.
Multiplication is done before addition. For
instance,

3 + 4 · 6 = 3 + 24 = 27,

because the multiplication is done before
the addition in the statement.

In the same way, there is an order of
operations of logical operators. First comes
logical NOT, then logical AND, and finally
logical OR. That is,

NOT before AND before OR

E6 State if the following are true or false.
a. ¬(10 = 10),

b. ¬(10 = 11),

c. ¬(10 = 11) ∧ (3 < 4).

d. ¬(10 = 11) ∨ (5 > 6) ∧ (3 < 4).
Answer. First apply the negation, then other
operators.

a. ¬(10 = 10) = ¬T = F .

b. ¬(10 = 11) = ¬F = T .

c. ¬(10 = 11)∧ (3 < 4) = ¬F∧ T = T∧ T = T .

d. ¬(10 = 11)∨ (5 > 6)∧ (3 < 4) = ¬F∨F∧T =

T ∨ F = T .

LOGIC AND ARITHMETIC

Fortunately, there are three facts about
indicator functions that enable us to turn
problems involving logic into multiplication
and addition.

F3 For logical statements s and r, the following
three statements hold.

I(¬s) = 1− I(s) Negation

I(s ∨ r) = I(s) + I(r)− I(s)I(r) logical OR

I(sr) = I(s)I(r) logial AND .

These three facts about indicators allow
us to break apart any logical statement
involving a finite number of NOT, AND,
and OR into additive and multiplicative
statements about the indicator function of
the individual variables.

F4 Write I((s ∨ ¬r) ∧ t) as an expression that only
uses constants, I(s), I(r), and I(t).
Answer. First use the logical AND rule to write

I((s ∨ ¬r) ∧ t) = I((s ∨ ¬r))I(t).

Next, the logical OR rule gives us

I((s ∨ ¬r))I(t) = [I(s) + I(¬r)− I(s)I(¬r)]I(t).

The negation rule then gives

I((s∨¬r))I(t) = [I(s)+1−I(r)−I(s)(1−I(r)]I(t).

Finally, simplify to obtain

I((s ∨ ¬r))I(t) = 1− I(r) + I(s)I(r)]I(t) .
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Proof. The easiest way to verify that these
three rules hold is with a truth table. Such
a table lists out the possible values for the
variables, and checks that the equations
are equal. For instance,

Negation Rule Truth Table
s ¬s I(¬s) 1− I(s)
T F 0 1− 1 = 0
F T 1 1− 0 = 1

So not matter what the value of s, the
Negation rule holds!

For the logical AND rule, there are two
choices for s and two for r, leading to four
possible choices for (s, r).

Logical AND Rule Truth Table
(s, r) I(sr) I(s)I(r)
(T,T) 1 1 · 1 = 1
(T, F) 0 1 · 0 = 0
(F,T) 0 0 · 1 = 0
(F, F) 0 0 · 0 = 0

Since the second and third columns are
equal, the logical AND rule holds.

Finally, the truth table for logical OR.

Logical OR Rule Truth Table
(s, r) I(s ∨ r) I(s) + I(r)− I(s)I(r)
(T,T) 1 1 + 1− 1 = 1
(T, F) 1 1 + 0− 0 = 1
(F,T) 1 0 + 1− 0 = 1
(F, F) 0 0 + 0− 0 = 0

The indicator function is a one-to-one
function, which immediately gives the
following.

F5 For logical statements p and q,

(p = q) = (I(p) = I(q)).

This allows us to work out more
complicated equations using arithmetic
instead of logic.

F6 For a logical statement s,

¬¬s = s.

Proof. Note

I(¬¬s) = 1− I(¬s) = 1− (1− I(s)) = I(s).

Since the two statements have the same
indicator function, they have the same
truth value.

Indicators over logical AND become
multiplication.

F7 For a sequence of logical statements s1, s2, . . .,

I(s1s2) = I(s1)I(s2)
I(s1s2 · · · sn) = I(s1)I(s2) · · · I(sn)

I(s1s2 · · · ) = I(s1)I(s2) · · · .

Proof. The statement I(s1s2) = I(s1)I(s2) can
be verified by checking that it holds for
(s1, s2) ∈ {(T,T), (T, F), (F,T), (F, F)}.

This can then be used in an induction to
obtain the second statement.

By definition

I(s1s2 · · · ) = I

( ∞∏
i=1

I(si) > 0

)
.

That is 1 if and only if the infinite product
is 1, which in turn means that for any
finite n,

∏n
i=1 I(si) = 1. The limit as n goes

to infinity then gives the right hand
side.

So logical AND comes out of indicator
functions as multiplication, but logical OR
is not quite so simple as just being
addition. Instead, inclusion-exclusion
holds.

F8 For events s and r,

I(s ∨ r) = I(s) + I(r)− I(sr).

Proof. If the left hand side is 0, then both
s and r are false and the right hand side is
0.

If the left hand side is 1, then either one
of s and r is true, so I(s) + I(r) = 1 and
I(sr) = 0 so the equation balances, or two
of s and r are true, so I(s) + I(r) = 2 and
I(sr) = 1, so 1 = 2 − 1 and the equation
balances.
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DE MORGAN’S LAWS
At this point something more advanced
can be proved, namely, De Morgan’s Laws.
These allow logical NOT to be distributed
over logical OR and logical AND. First,
consider distribution over logical OR.

F9 For events s and r,

¬(s ∨ r) = ¬s ∧ ¬r.

Proof. Compare indicator functions:

I(¬(s ∨ r)) = 1− I(s ∨ r)

= 1− [I(s) + I(r)− I(sr)]
= 1− I(s)− I(r)− I(s)I(r)
= (1− I(s))(1− I(r))
= I(¬s)I(¬r)
= I(¬s ∧ ¬r).

For example, suppose y is the logical
statement that a ball is yellow, and b is the
logical statement that a ball is blue. Then

¬(y ∨ b)

is the logical statement that the ball is
neither yellow nor is it blue.

The logical statement

¬y ∧ ¬b

is the statement that the ball is not yellow
and not blue.

De Morgan’s law states that these two
statements are the same. These laws can
be generalized as follows.

T1 De Morgan’s Laws For a sequence s1, s2, . . . of
events, and n =∈ {1, 2, . . .}, De Morgan’s laws
state

¬
∨

si =
∧

¬si

¬
∧

si =
∨

¬si.

Proof. To see the first result, suppose at
least one of the si is true. Then the logical
OR is true, and the negation is false. On
the right hand side, at least one of the ¬si
is false, making the logical AND false.

The second result is similar.

E7 To write

¬(s1 ∨ s2 ∨ ¬s3)

using only logical AND and logical NOT, apply De
Morgan’s Laws to state

¬(s1 ∨ s2 ∨ ¬s3) = ¬s1 ∧ ¬s2 ∧ s3.

SOLVING THE STORY
In the Ranger’s story at the beginning, let

s1 = The horde contains a hippogriff

s2 = The horde contains a bugbear

Then the Ranger believes that s1 ∨ s2 is
true. The question to be considered is
what is the negation of this event?

Using De Morgan’s Laws:

¬(s1 ∨ s2) = ¬s1 ∧ ¬s2.

In English, the negative of the statement
"the horde contains either a hippogriff or a
bugbear (or both)" is "the horde does not
contain a hippogriff and it does not
contain a bugbear."

Circuits
All digital computers are created using circuits,
which employ either logical OR, logical AND, or
logical NOT to solve problems. Any circuit can be
broken down into these component parts. In the
same way, our methods of calculating probabilities
will break apart events into pieces using logical OR,
logical AND, and logical NOT.

IMPLICATION
Say that s1 implies s2 if whenever s1 is true,
then s2 must be true as well. For instance,
(x > 3) implies that (x > 0), since whenever
(x > 3) is true, it must also be true that
(x > 0). Note that the reverse implication
does not hold: just because (x > 0), there
is no guarantee that (x > 3) will be true.

In the end, this means that either ¬p is
true or p and q are both true. Using the
distribution laws:

¬p ∨ (p ∧ q) = (¬p ∨ p) ∧ (¬p ∨ q)

= T ∧ (¬p ∨ q)

= (¬p ∨ q).
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D12 Say that s1 implies s2 (write s1 → s2) to
mean

(s1 → s2) = (¬s1 ∨ s2)).

SUBSETS

Logical implication is closely tied to the
notion of one set being a subset of another
set.

D13 For two sets A and B, say that A is a subset
of B and write A ⊆ B to mean

(A ⊆ B) = ((x ∈ A) → (x ∈ B)).

For instance, {1, 5, 7} ⊆ {1, 2, . . . , 7} since

(x ∈ {1, 5, 7}) → (x ∈ {1, . . . , 7}).

ENCOUNTERS
19. LOGICAL AND AND OR
State if the following are true or false.
a. (1 < 6) ∨ (6 < 1)

b. (1 < 6) ∧ (6 < 1)

a. (6 < 1) ∨ (1 < 6) ∧ (10 > 20)

20. NEGATION

State if the following logical statements are
true or false.
a. ¬(1 > 6)

b. ¬(6 > 1) ∨ (7 > 3)

c. ¬(6 > 1) ∨ (7 > 3) ∧ (4 > 2)

21. COUNTABLE LOGICAL AND
Let x be a a positive integer (so
x ∈ {1, 2, 3, . . .}). State if
(x ≥ 1) ∧ (x ≥ 2) ∧ (x ≥ 3) ∧ · · · is true or
false.

22. COUNTABLE LOGICAL OR
Let x be a a positive integer (so
x ∈ {1, 2, 3, . . .}). State if
(x ≥ 1) ∨ (x ≥ 2) ∨ (x ≥ 3) ∨ · · · is true or
false.

23. MORE REDUCING LOGIC TO
ARITHMETIC

Write I(¬s ∨ negr) using only constants, I(s),
and I(r).

24. REDUCING LOGIC TO
ARITHMETIC

Write I(¬(s ∧ r)) using only constants, I(s),
and I(r).

25. PROOF WITH INDICATOR
FUNCTIONS

Prove that ¬(s ∧ r) = ¬s ∨ ¬r using indicator
functions.

26. MORE PROOF WITH
INDICATOR FUNCTIONS

Show that ¬(p ∨ q) = ¬p ∧ ¬q by comparing
their indicator functions.

27. LOGICAL ORDER OF
OPERATIONS

Write the order of operations for s ∨ w ∧ ¬r
explicitly using parentheses.

28. MORE LOGICAL ORDER OF
OPERATIONS

Write the order of operations for the
following logical expression using
parentheses.

¬a1 ∨ a2 ∧ a3 ∨ a4.

29. DE MORGAN’S LAWS

Write ¬(s1 ∧ ¬s2) using only logical OR and
logical NOT.

30. MORE DE MORGAN’S LAWS

Write ¬(¬s1∨s2∨¬s3) using only logical AND
and logical NOT.

31. IMPLICATION AND SUBSETS

State whether the following are true or
false.
a. (x > 4) → (x > 10).
b. (x > 4) → (x > 3).
c. {a, b, c} ⊆ {a, b, c, d}.
d. {a, b, c} ⊆ {a, c, e, g}.

32. MORE IMPLICATIONS AND
SUBSETS

State if the following are true or false.
a. (x = 3) → (x < 4).
b. (x = 3) → (x < 3).
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c. {2, 4, 6, . . .} ⊆ {1, 2, 3, . . .}.
d. {1, 2, 3, . . .} ⊆ {2, 4, 6, . . .}.
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CHAPTER 3: THE RULES OF PROBABILITY

A
GIANT PROBLEM. AS THE PARTY of

adventures ran from the group of
monsters, they realized that there
was a 60% chance the monsters

contained a Giant, 70% chance that the
monsters contained an Ogre, and a 40%
chance that the horde contained both.
What was the chance that the horde
contained either a Giant, an Ogre, or both?

MATHEMATICAL
PROBABILITY
A probability function is a function that
takes as input an event that might be true
or false, and returns a number from 0 up
to 1 that gives the information about the
truth of the event.

THE COLLECTION OF EVENTS

An event is just any logical statement that
can be assigned a probability. Let F
denote the collection of all events. The goal
is to make F the domain of our probability
function. Then it turns out that it will be
helpful that F has several properties.

First, any event that is always true will
be assigned probability 1. Hence T ∈ F .

Second, if an event is in F that means it
is possible to assign a probability that the
event is true. That in turn means it should
be possible to assign a probability that the
event is false. In other words, if s ∈ F , then
¬s ∈ F should also hold.

The third (and last) property is a bit
more unusual. Suppose a fair coin with
outcomes heads and tails is flipped over
and over again and si is the event that the
first i − 1 flips were tails and the ith flip of
the coin was heads. So if the first few coin
flips were

TTHTH . . .

then s1 = s2 = F, while s3 = T. The rest of
the events s4 = s5 = s6 = . . . are all false
with this sequence of coin flips.

Consider the logical statement

s1 ∨ s2 ∨ · · · .

This is the logical statement that the
number of flips until the first head is
either 1, or 2, or 3, and so on. Another way
to say this is the event that the number of
flips needed for the first head is some finite
integer. Given that each si is assigned a
probability, it would be useful to also
guarantee that their logical OR was also an
event, that is, that it could also be
assigned a probability.

Therefore, our last property is that if
there are a countable sequence of events
then the logical OR of that sequence is also
an event. If these three properties hold for
the collection of events, call the collection
a σ-algebra.

D14 A nonempty set F is a σ-algebra if for all
sequences s1, s2, . . . of events in F , the following
three properties hold.

1. T ∈ F .
2. ¬s1 ∈ F .
3. s1 ∨ s2 ∨ · · · ∈ F .

Naming σ-algebras
Why do we usually use a script capital letter F for
a σ-algebra? Because the French word for closed is
fermé, and the collection of sets is closed under
negation and logical OR.

THE PROBABILITY FUNCTION

Now that the properties of the set of events
is clear, it is possible to formally define
what is a probability function. There are
two ideas. The first is that the probability
of a true statement should be 1. That is
just so that probability functions are
extensions of indicator functions.

The next part is trickier, so it helps to
return to our example of an infinite
sequence of coin flips. Suppose that N
represents the number of flips needed to
get a head on the coin. So N = 1 means
the very first flip was a head. And N = 2
means the first flip was a tail, and then the
second flip was a head, and so on.

Note that N = 1 and N = 2 are disjoint
events meaning that they cannot both
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happen at the same time. That is, they
cannot both be true simultaneously. So
the probability that either of those two
events occurring should just be the sum of
the probability of the two events. That is, if
P(N = 1) = 0.3 and P(N = 2) = 0.21, then

P(N = 1∨N = 2) = P(N ∈ {1, 2}) = 0.3+0.21 = 0.51.

In fact,

(N = 1), (N = 2), (N = 3), . . .

form an entire sequence of disjoint events
because at most one can be true at a time.
Just like in the example with two disjoint
events, the probability that any of those
sequence of disjoint events occurring
should just be the sum of the individual
probabilities that the events occur.

When that holds for all disjoint
sequences of events (together with the rule
that P(T) = 1,) the result is a probability
function.

D15 Probability Function
For F a σ-algebra, P : F → [0, 1] is a

probability function (aka probability measure
aka probability distribution) if the following
properties hold.

1. (Probability of truth) P(T) = 1.

2. (Countable additivity) If s1, s2, . . . are a
disjoint sequence of events, then

P

( ∞∨
i=1

si

)
=

∞∑
i=1

P(si).

FIVE MORE RULES OF
PROBABILITY
So why make a formal definition of
probability? Well, it turns out that many
other rules that would be useful in
calculating probabilities can be derived
just from the two rules given above. Here
are five in particular.

F10 For any probability function P, and events
s1, s2, s3, . . ., the following hold.

1. (False events) P(F) = 0.

2. (Disjoint finite events) If s1, . . . , sn are disjoint,
then

P

(
n∨

i=1

si

)
=

n∑
i=1

P(si).

3. (Negation rule) P(¬s1) = 1− P(s1).
4. (Nondisjoint events)

P(s1 ∨ s2) = P(s1) + P(s2)− P(s1s2).
5. (Implication) If s1 → s2, then P(s1) ≤ P(s2).

These five facts are also true for
indicator functions I! The fact that they
also hold for probability functions is just
icing on the cake.

To prove these facts about probability
functions, it helps to do them in order.

PROBABILITY OF A FALSE
STATEMENT IS 0
First show that P(F) = 0.

Proof. Let P(F) = α. Then s1 = s2 = · · · = F
form a sequence of events satisfying

∞∑
i=1

I(si) =
∞∑
i=1

0 = 0 ≤ 1.

Hence the events are disjoint. By
countable additivity,

P

( ∞∨
i=1

si

)
=

∞∑
i=1

P(si)

= P(s1) +
∞∑
i=2

P(si)

= P(s1) + P(

( ∞∨
i=2

si

)
.

But all the terms are the probability of a
false statement, and so are just α, giving

α = α+ α

and α = 0.
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Why not just assume facts?
At this point you might be wondering, why not just
assume that P(F) = 0 instead of trying to prove it?
There are two reasons. First, the goal is to assume
as few things as possible, and then try to build out
from there. Second, the more assumptions you
make, the more likely you are to cause a
contradiction in your assumptions, which brings the
whole logical structure crashing down. So that is
why it is standard operating procedure in
mathematics to assume as little as possible, and
see if we can get the things about probability that
we wish were true as a logical conclusion from the
assumptions.

FINITE DISJOINT EVENTS RULE

Next comes the rule that for disjoint
s1, . . . , sn, P(∨si) =

∑
P(si).

Proof. Let {s1, . . . , sn} be any finite set of
disjoint events, and then let
sn+1 = sn+2 = · · · = F.. Then

∞∑
i=1

I(si) =
n∑

i=1

I(si) +
∞∑

i=n+1

I(si) ≤ 1 + 0 = 1,

so the sequence is disjoint. So by
countable additivity,

P

( ∞∨
i=1

si

)
=

∞∑
i=1

P(si) =
n∑

i=1

P(si) +
∞∑

i=n+1

P(si).

Since each si = F for i ≥ n + 1, it holds
that (i ≥ n+ 1) → (P(si) = 0), so

∞∑
i=n+1

P(si) = 0.

Also,

∞∨
i=1

si =

(
n∨

i=1

si

)
∨

( ∞∨
i=n+1

si

)

=

(
n∨

i=1

si

)
∨ F =

n∨
i=1

si

That means that

P

(
n∨

i=1

si

)
= P

( ∞∨
i=1

si

)
=

n∑
i=1

P(si),

and the proof is complete.

NEGATION RULE
Next is the negation rule, that P(¬s) = 1 −
P(s).

Proof. Note that

I(s) + I(¬s) = I(s) + 1− I(s) = 1 = I(T).

Hence s and ¬s are disjoint events and s ∨
¬s) = T.

Therefore, the previous rule gives

P(s ∨ ¬s) = P(s) + P(¬s) = P(T) = 1,

and the proof follows from rearranging the
terms.

INCLUSION-EXCLUSION
Earlier it was shown that for any two
logical statements

I(s ∨ r) = I(s) + I(r)− I(sr).

The same principle holds for events as
well, and is called the Principle of
Inclusion-Exclusion. To verify it, a logical
diagram called a Venn diagram can help to
visualize what is happening. This diagram
makes us aware that s ∨ r is the disjoint
logical OR of three parts, s(¬r), sr, and
(¬s)r. The left circle represents when s is
true, while the right is when r is true. So
s ∨ r is the area of the two circles combined.

s r

s(¬r) sr (¬s)r

Logic and sets
Venn diagrams were initially introduced for logical
statements, but today they are more commonly
used to illustrate sets and set theory.

F11 Given events s and r, then sr and (¬s)r are
disjoint and (sr ∨ (¬s)r) = r.

Furthermore, s(¬r), sr, and (¬s)r are disjoint
and their logical OR is s ∨ r.
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Proof. Since s and ¬s are disjoint,

I(r) = I(r(s ∨ ¬s))
= I(r)I(s ∨ ¬s)
= I(r)(I(s) + I(¬s))
= I(sr) + I((¬s)r).

The left hand side is at most 1 so the
events in the right hand side terms must
be disjoint. Further, because the sum of
their indicators gives the indicator on the
left, their logical OR must equal the event
on the left.

To show the second part, recall

I(s ∨ r) = I(s) + I(r)− I(s)I(r)
= I(s)(1− I(r)) + I(r)
= I(s)I(¬r) + I(r)

When an event is the logical OR of
disjoint events, it is called a partition.

D16 If s = r1 ∨ r2 ∨ · · · where the ri are disjoint,
say that the ri partition s.

Now it is possible to show
inclusion-exclusion for probabilities:

P(s ∨ r) = P(s) + P(r)− P(sr).

Proof. Use the fact that s ∨ r can be
partitioned into s(¬r), sr, and (¬s)r to write

P(s ∨ r) = P((¬s)r) + P(sr) + P(s(¬r))

Adding and subtracting P(sr) gives

P(s ∨ r) =[P((¬s)r) + P(sr)]+
[P(s(¬r)) + P(sr)]− P(sr).

Now use the fact that (¬s)r and sr partition
r, and s(¬r) and sr partition s to get

P(s ∨ r) = P(s) + P(r)− P(sr).

IMPLICATION

Recall that s → r means that whenever s
is true, r must be true as well. If s is false,
then r might be either true or false. So

(s → r) = ((sr ∨ ¬s))

The diagram for implication is called an
Euler diagram. Whenever s is true, r is
true as well.

s

r

Euler and Venn diagrams
It is easy to confuse Euler and Venn diagrams.
Venn diagrams are the most general, any drawing
with n logical statements will divide the paper into
2n regions. For instance, s and r divide the logical
space into sr, (¬s)r, s(¬r), and (¬s)(¬r). Euler
diagrams can be about more specific relationships,
as in the previous example of s → r where there
are only three regions, s, (¬s)r, and ¬r.

If s → r, then intuitively r is at least as
likely to be true as s is, since whenever s is
true so is r, but there could be cases
where s is false but r is true. The
implication rule makes this intuition
precise,

(s → r) → (P(s) ≤ P(r)).

Proof. As before,

P(r) = P(r(¬s)) + P(rs),

and observe sr = s. Using (s → r) = (sr ∨
¬s) = T, this can be shown formally as

(sr ∨ ¬s) = T

(sr ∨ ¬s)s = (T)(s)

(srs ∨ (¬s)(s)) = s

ssr ∨ F = s

sr = s.
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SOLVING THE STORY
In the story given at the beginning, let

s = The group of monsters contains a Giant.

r = The group of monsters contains an Ogre.

Assigning English phrases to one letter
variable names allows us to write down the
problem much more compactly. The
information the party has is

P(s) = 60%

P(r) = 70%

P(sr) = 40%.

Therefore, P(s ∨ r) = 0.6 + 0.7− 0.4 = 90% .

EXAMPLES
E8 Find P((x < 3) ∧ (x > 4)).
Answer. No matter the value of x, (x < 3) ∧ (x >

4) = F, so P((x < 3) ∧ (x > 4)) = 0 .

E9 If P(X = 3) = 0.2, P(X = 4) = 0.3, and
P(X = 5) = 0.25, what is P(X ∈ {3, 4, 5})?
Answer. Since (X = 3), (X = 4), and (X = 5)

are disjoint events, P(X ∈ {3, 4, 5}) = P(X =

3) + P(X = 4) + P(X = 5) so 0.7500 .

E10 If P(X ≤ 4) = 0.1155 where X is a real
number, what is P(X > 4)?
Answer. Since (X ≤ 4) = ¬(X > 4), P(X > 4) =

1− P(X ≤ 4) and the answer is 0.8845 .

E11 Two friends go miniature golfing on Friday
nights. The chance that the first player gets at least
one hole in one is 30%. The chance that the
second player gets at least one hole in one is 20%.
The chance that both players get at least one hole
in one is 10%. What is the chance that either one
of the players (or both) gets a hole in one?
Answer. Let si denote the event that player i gets
at least one hole in one. Then

P(s1∨s2) = P(s1)+P(s2)−P(s1s2) = 30%+20%−10%,

and so the answer is 40% .

E12 If it is known that P(Y ≥ 10) = 0.3, what can
you say about P(Y ≥ 8)?
Answer. Since (Y ≥ 10) → (Y ≥ 8), the best that
can be said is that P(Y ≥ 8) is at least 30% .

E13 Suppose X ∼ d8. What is P(X > 6)?
Answer. This can happen when X = 7 or X = 8.
Since X ∼ d8 means the die is fair, each of these
happen with probability 1/8, so

P(X > 7) = P(X = 7)+P(X = 8) = 1/8+1/8 = 1/4

making the answer 25% .

ENCOUNTERS
33. TRUE STATEMENTS

For X ∈ R, what is P(X2 ≥ 0)?

34. MORE TRUE STATEMENTS

For X a real number, what is P((X > 2) ∨
(X < 10))?

35. FALSE STATEMENTS

For Y ∈ R, what is P(|Y | < 0)?

36. MORE FALSE STATEMENTS

For X a real number, what is P((X > 10) ∧
(X < 2))?

37. ROLLING THE DICE

Consider the following.
a. If W ∼ d6, what is P(W is even)?
b. If R ∼ d10, what is P(R ≤ 7)?
c. If Y ∼ d100, what is P(Y ≤ 72)?

38. A FAIR SIX-SIDED DIE

If X ∼ d6, what is
a. P(X = 1).
b. P(X ∈ {1, 2}).
c. P(X ≤ 3.5).
d. For i ∈ {1, 2, 3, 4, 5, 6}, P(X ≤ i).

39. USING RULES

If P(Y < 2) = 0.3 and P(Y ∈ [2, 3]) = 0.4, what
is P(Y ∈ (−∞, 3])?

40. BREAKING APART PROBLEMS

Suppose P(T = 1) = 0.2, P(T = 2) = 0.15,
and P(T = 3) = 0.4. What is P(T ∈ {1, 2, 3})?
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41. NEGATION RULE

If P(G ≥ 4) = 0.2, what is P(G < 4)?

42. MORE NEGATION

If P(X = 4) = 0.3, what is P(X ̸= 4)?

43. IMPLICATION

Given that P(R ≤ 4) = 0.2, what can be said
about P(R ≤ 5)?

44. MORE IMPLICATION

Suppose P(X = 3) = 0.6. What can be said
about P(X ∈ {2, 3, 4})?

45. COMBINING RULES

Suppose P(X ≥ 3) = 0.4, P(X ≤ 4) = 0.8.
What is P(X ∈ [3, 4])?

46. INCLUSION-EXCLUSION

Suppose P(X ∈ A) = 0.4, P(X ∈ B) = 0.3,
and P(X ∈ A ∩ B) = 0.15. What is P(X ∈
A ∪B)?

CHAPTER 3: THE RULES OF PROBABILITY17



CHAPTER 4: CONDITIONAL PROBABILITY

T
HE RANGER AND THE THIEF looked
at the small pile of gems and
gold coins they had taken from
the defeated Lich’s lair. Both felt

exhilarated, both felt exhausted. Each
eyed the treasure, and then each other.
"Feeling lucky?" the Thief said
mischievously, and continued, "Then
perhaps a game to decide the owner of the
treasure? Winner take all!" The stakes
were set. The game would be determined
by three flips of a gold coin. They selected
one golden coin from the hoard. The side
with the Emperor Konravis imprinted upon
it they dubbed heads, the other side with a
wyvern they called tails. A head would
count as a win for the Ranger, tails for the
Thief. Out of three flips, the player who
won two or more would take it all. The first
flip was made, and heads came up! The
Ranger smiled, knowing that the odds of
winning had just increased. But by how
much?

Just at that moment, the rest of the
party burst in. "We must flee," they
shouted, "Grab your riches and go!" The
Ranger and Thief scooped their treasure
into a pouch. But who owned it? The
Ranger was certainly favored to win,
having won the first game, but it was not
impossible that the Thief could still win
the game should it continue later.

The two players faced the Problem of
Points. Given that the Ranger had taken
the first point, but that the game had not
concluded, how should they now fairly
divide the loot to acknowledge that fact?

PARTIAL INFORMATION
Consider the following event:

s = The Ranger wins the whole game.

Assuming the coin is fair before any flips
have been made, the Principle of
Indifference would lead us to say that
either player is equally likely to win the
game. So P(s) = 1/2.

But after the first coin flip, our
knowledge has increased. Let us give that
event a name.

h1 = The first coin flip was heads.

It is no longer the case that we have no
information: now it is known that
statement h1 is true. That changes things!
To reflect that fact, better notation is
needed.

Given Information
The probability that statement s is true given that
statement r is true will be denoted

P(s | r).

This is read: "the probability s is true given that r
is true."

Everything to the right of the vertical bar
| is information we have, everything to the
left of the vertical bar is things that are
still uncertain. Important note: in general
P(s | r) ̸= P(r | s). Never just flip the order in
conditional probability.

So now there is notation for conditional
probabilities, but how can they be
calculated? Well, two of them are easy.
Note that

P(r | r) = 1

P(¬r | r) = 0.

The first equation says that conditioned
on r being true, r is true and so has
probability 1. The second line says that
conditioned on r being true, ¬r is false and
so has probability 0.

But what about more general P(s | r)
where event s is not completely determined
by event r? It helps to consider what
happens in the game played by the Ranger
and the Thief, the Problem of Points.
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SOLVING THE
PROBLEM OF POINTS
In a game of three flips where each coin
has two outcomes, there are 2 · 2 · 2 = 8
different outcomes that could occur. Recall
s is the outcome that the Ranger wins the
game, so there are at least two heads. The
event h1 is that the first outcome is a head.

Outcomes of the Problem of Points

Outcome s h1 s ∧ h1

(H,H,H) T T T
(H,H, T ) T T T
(H,T,H) T T T
(H,T, T ) F T F
(T,H,H) T F F
(T,H, T ) F F F
(T, T,H) F F F
(T, T, T ) F F F

If the coin is fair, then each of these
outcomes is equally likely. But if the first
flip is known to be a head, then only the
first four outcomes in the table are
possible. The rest can be ignored. And out
of those first four outcomes, which are
HHH, HHT , HTH, and HTT , three out of
four result in the Ranger winning the
overall game. Hence P(s | r) = 3/4 in this
case!

The probability the Ranger wins overall
will be 75% , which would indicate that
unless they can complete the game, the
Ranger should get 75% of the treasure
they were betting on.

THE GENERAL
FORMULA
To generalize this notion, consider a figure
where the probability of an event is
proportional to its size. There are two
events to consider, s and r.

s r

Given that r is known to be true,
probabilities are now thought of with the
notion that P(r | r) = 1. Hence either the
event sr or the event (¬s)r must be true,
there are no other options. Then the
proportion of area out of r given to sr is

P(sr | r) = P(sr)
P(sr) + P(¬sr)

=
P(sr)
P(r)

In general, this idea is called the
conditional probability formula.

D17 The conditional probability formula says
that for P(r) > 0,

P(s | r) = P(sr)
P(r)

.

For the Problem of points, P(sr) = 3/8
(since 3 out of the 8 cases have both the
Ranger winning the first flip and winning
overall) and P(r) = 4/8 (since 4 out of the 8
cases have the Ranger winning the first
flip.). Hence

P(s | r) = sr

r
=

3/8

4/8
=

3

4

as before.

E14 The chance that a student both studies for
and does well on an exam is 40%. The chance that
the student does well on the exam is 50%. What is
the chance that the student studies given that they
did well on the exam?
Answer. Let s be the event that the student studies
and w be the event that the student does well on
the exam. Then

P(w) = 0.5
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and
P(sw) = 0.4,

so
P(w | s) = P(sw)

P(w)
=

0.4

0.5
,

which is 80% .

E15 A biologist is studying two traits in a
population. If 90% of the species has the first trait
and 85% has both traits, what is the probability
that a subject with the first trait has both traits?
Answer. In these types of problems, it is important
to write down the information that is given. First,
name the events of importance.

t1 = has the first trait

t2 = has the second trait

Next, what information does the problem give?

P(t1) = 90%

P(t1t2) = 85%.

Finally, what is the problem asking for? In this
case,

P(t2 | t1).

Fortunately, the conditional probability formula
only requires information given by the problem
statement!

P(t2 | t1) =
P(t1t2)
P(t1)

=
85

90
,

which is approximately 94.44% .

Conditional keywords
Keywords for conditional probability are "given",
"when", "assuming", and "if-then". For instance,
"What is the probability of snow given that it
snowed yesterday?", "What is the probability of
snow when it snowed yesterday?", "What is the
probability of snow today assuming it snowed
yesterday", and "If it snowed yesterday, then what
is the probability of snow today" are all asking
"What is P(s1 | s0)?" where s1 is the event that it
snows today, and s0 is the event that it snows
yesterday.

Remember, when solving probability
problems, the following steps can be
helpful.

Steps for solving probability problems
First. Write down what you know. This means that
names should be assigned to events that are part
of the problem and write down the probabilities
and conditional probabilities that are in the
problem statement.
Second. Write down the goal using mathematics,
that is, in probability notation.
Third. Only after completing steps 1 and 2 are you
ready to tackle the problem!

TWO-STAGE EXPERIMENTS

Another way to think of the conditional
probability formula is by viewing the
problem as a two-stage experiment. Think
about the event that both s and r are true.
First, r has to hold, which happens P(r)
fraction of the time. Out of the times that r
holds, the fraction of the time that s holds
will be P(s | r). So P(r)P(s | r) should be the
probability that s and r hold, or P(sr). That
is,

P(r)P(s | r) = P(sr).

That is just a rearrangement of the
conditional probability formula.

E16 The chance of rain tomorrow is 80%. The
chance of lightning given that it rains tomorrow is
10%. What is the chance of both rain and lightning?
Answer. If a is the event that it rains, and b the
event that there is lightning, then

P(ab) = P(a)P(b | a) = (80%)(10%)

which is 8% .

There is no particular reason to stop at
two stages of an experiment. This idea
works for three or more stages as well:

P(a1a2a3) = P(a1)P(a2 | a1)P(a3 | a2a1).

In this fashion, the probability that any
number of events that are all true can be
calculated!

ODDS
Yet another way to understand conditional
probability is to use the odds version of
probability.
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D18 For a given statement s, the odds that s is
true is

P(s)
P(¬s)

.

For example, if P(s) = 2/3, then
P(¬s) = 1/3, and the odds that s happens is
(2/3)/(1/3) = 2/1. This is often read as "2 to
1" odds, or using an older notation for
fractions, 2 : 1.

Unlike probabilities, odds can be greater
than 1 (for instance, 5 : 4) less than 1 (3 : 7),
or equal to 1 (1 : 1 odds).

ENCOUNTERS
47. A CONDITIONAL DIE

Suppose X ∼ d6. Find P(X = 1 | X ≤ 4).

48. BASIC CONDITIONAL
PROBABILITY

Suppose P(p) = 0.3, P(q) = 0.2 and P(p, q) =
0.15.
a. What is P(p | q)?
b. What is P(q | p)?

49. INTERVAL CONDITIONING

The probability that X ∈ [3, 7] is 0.423 and
the probability that X ≤ 7 is 0.620. What is
P(X ∈ [3, 7] | X ≤ 7)?

50. ANOTHER CONDITIONAL DIE

For Y ∼ d10, what is P(Y = 4 | Y ≤ 8)?

51. BLOOD TESTS

Given that a patient has a particular
disease, the chance that a particular blood
test comes back positive is 75%. The
chance that the blood test comes back
positive if the patient does not have the
disease is 10%. The chance of having the
disease is 3%. What is the chance that a
patient gets back a positive?

52. LOOKING FOR COPPER

A mining company models that if a hillside
contains ore, there is a 20% chance that
they will find it. If there is no ore, then of
course they will not find any. Suppose
there is a 36% chance the hillside contains

ore. What is the chance that the company
finds it?

53. THE SATELLITE

A weather satellite detects precipitation
when precipitation exists 98% of the time.
It gives a false positive and reports
precipitation when none exists 4% of the
time. If there is a 10% chance of
precipitation, what is the chance that the
satellite reports that there is precipitation?

54. EMERGENCY!
A disaster preparation center classifies
disasters as Type I, II, or III. The
probability of each occurring in a decade is
5%, 2%, and 1% respectively.

Given that a Type I, II, or III disaster did
occur, what is the probability that it is a
Type I?

55. RAINING ONCE MORE

If the odds that it will rain today are 4 to
5, what is the probability that it will rain
today?

56. TUMOR ODDS

The odds of a malignant tumor
metastasizing is 4:3. What is the
probability that the tumor metastasizes?

57. ODDS AND FAIRNESS

Prove that if the odds for s are greater than
1, then P(s) > 50%.

58. ODDS AND PROBABILITIES

Prove that if the odds for s are greater than
4 to 1, then P(s) > 80%.

59. EXPERIENCE

Three out of seven staff members have
experience working with R. If two staff
members are chosen uniformly to be part
of a task force, what is the chance that
both will know R?

60. DRAWING CARDS

In a standard deck of 52 cards, 13 are
hearts.
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a. If two cards are chosen from the deck
without replacement, what is the chance
that both are hearts?
b. What is the chance that neither card is a
heart?
c. What is the chance that exactly one card
is a heart?

61. THE FOOD PANTRY

There are 9 cans in a food pantry which
are unlabeled, but the inventory sheet says
that they must be 4 cans of green beans
and 5 cans of corn.
a. If 4 cans are chosen uniformly without
replacement, and the first two cans chosen
have green beans, what is that chance that
the third can has green beans?
b. If 4 cans are chosen uniformly without
replacement, what are the chances that all
4 have green beans?

62. A CORNY PROBLEM

Continuing the last problem, what is the
chance that all 4 of the cans chosen have
corn?
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CHAPTER 5: INDEPENDENCE

B
OUNTY HUNTERS WERE following
the Pirate Captain’s ship. There
were five different bounty hunters,
each working independently. If

each bounty hunter had only a 20%
chance of catching the Captain’s ship,
then what was the chance that at least one
of the bounty hunters caught up?

INDEPENDENCE OF
TWO EVENTS
Sometimes, information about whether or
not an event like q is true does not give us
any information about whether or not
event p is true. In this case, call the two
events independent. Note that if
P(p | q) = P(p), then P(p) = P(pq)/P(q) and
P(p)P(q) = P(pq). That makes for a better
definition of independence, since it works
even when P(p) or P(q) is 0.

D19 Events p and q are independent if P(pq) =

P(p)P(q).

This is a perfectly symmetric definition.

F12 If p and q are independent, then so are q and
p.

Proof. Say p and q are independent, then

P(qp) = P(pq) = P(p)P(q) = P(q)P(p).

Another way to talk about independence
is in terms of conditional probability.
Event p is independent of q if conditioning
on q being true does not change the
probability that p is true.

F13 Suppose p and q are events with P(q) > 0).
Then p and q are independent if and only if P(p |
q) = P(p).

If p and q are independent, it means that
knowledge of one has no effect on the

other. Therefore, it stands to reason that p
and ¬q should also be independent
because knowing if q is not true should
also not affect p.

F14 If p and q are independent, then so are p and
¬q.

Proof. Suppose p and q are independent.
Then pq ∨ p(¬q) form a disjoint partition of p,
so

P(p) = P(pq ∨ p(¬q)) = P(pq) + P(p(¬q)).

Rearranging gives

P(p(¬q)) = P(p)− P(pq)
= P(p)− P(p)P(q)
= P(p)(1− P(q))
= P(p)P(¬q),

so p and ¬q are also independent.

MORE THAN TWO
EVENTS
So what should it mean for events
s1, s2, . . . , sn to be independent? What
should independence of a sequences
s1, s2, . . . mean? The idea is that the
probability any finite subset of events hold
should equal the product of the
probabilities that the events hold.

D20 A finite set of events s1, . . . , sn are
independent if for all I ⊆ {1, . . . , n},

P

(∧
i∈I

si

)
=
∏
i∈I

P(si).

Note that this requires not just that the
entire logical AND can be broken into
products, but that any subset of the events
can have the logical AND broken into
products.
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Disjoint and independence↔ sum and
multiply
Disjoint events allow probabilities of logical OR to
be turned into sums. Independent events allow
probabilities of logical AND to be turned into
products. Disjoint events with probabilities strictly
between 0 and 1 mean that at most one of the
events can occur, so they are never independent!

A similar result as before holds for
negations.

F15 If s1, . . . , sn are independent, so are
f1, . . . , fn, where for each fi either fi = si or
fi = ¬si.

Proof. Use induction on m, the number of
i such that fi = ¬si. The base case when
m = 0 is trivial since the si and the fi are
the same.

Now suppose that the statement holds
for some m and consider a new set of fi
with m+ 1 negations.

Let k = max{i : fi = ¬si}. Set gi = fi for
i ̸= k and gk = sk.

Then by the two events result, sk and∧
i ̸=k

fi

are independent, which means fk = ¬sk
and ∧i ̸=kfi are independent so

P
(∧

fi

)
= P

fk
∧
i ̸=k

fk

 = P(fk)P

∧
i ̸=k

fk

 .

By the induction hypothesis,

P

∧
i ̸=k

fi

 =
∏
i ̸=k

P(fi),

which combined with the P(fk) factor
completes the induction.

SEQUENCES

D21 A sequence s1, s2, . . . of events is
independent if for every n ∈ {1, 2, 3, . . .}, the
events {s1, s2, . . . , sn} are independent.

It is actually pretty rare to have to prove
directly that a sequence is independent.
Instead, it is often something assumed
based on the situation, and then the
property can be used.

SOLVING THE STORY
Back to the pirate and bounty hunters! Let
si denote the event that the ith bounty
hunter catches the Pirate Captain. Then
the Captain is interested in the probability
that at least one of the bounty hunters
catches the ship. That is, the goal is to
find

P

(
5∨

i=1

si

)
.

The problem implies that the si are
independent, but independence only
applies to a logical AND. The problem is an
OR. Use De Morgan’s laws to switch from
AND to OR. De Morgan’s laws state that

¬

(
5∨

i=1

si

)
=

5∧
i=1

¬si,

so (
5∨

i=1

si

)
= ¬

5∧
i=1

¬si,

Applied to our Captain’s question:

P

(
5∨

i=1

si

)
= P

((
¬

5∧
i=1

¬si

))

= 1− P

(
5∏

i=1

P(¬si)

)
= 1− (1− 0.2)5

= 0.67232.

So our bounty hunters have about a
67.23% chance that at least one of them
catches the Captain’s ship.

NOTE ON INDEPENDENCE OF
THREE OR MORE EVENTS

It is tempting to think that

P(s1s2 · · · sn) =
n∏

i=1

P(si),

is enough to give independence of s1, s2,
and s3, but it is not. It really is necessary
to have the more complicated definition.

To see why, suppose X ∼ d27). Suppose
s1 = (X ≤ 18), s2 = (X > 9), and s3 = ((X ∈
{11, . . . , 18}) ∨ (X ≤ 5) ∨ (X > 22)). Then

P(s1) = P(s2) = P(s3) =
18

27
=

2

3
,
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and s1s2s3 = (X ∈ {11, . . . , 18}) so

P(s1, s2, s3) =
8

27
=

(
2

3

)3

= P(s1)P(s2)P(s3).

However, s1, s2, and s3 are not
independent! There are many reasons why,
one is that s1 and s2 are not independent.

P(s1s2) =
8

27
,

while

P(s1)P(s2) =
2

3

2

3
=

4

9
=

12

27
.

So, just because the logical AND of three
events breaks into the product of the
probabilities does not mean that the logical
AND of any two of the events will break
into smaller products.

INDEPENDENT RANDOM
VARIABLES
The notion of independence can also be
extended to random variables.

D22 Say that random variables X and Y are
independent if for every pair of measurable sets A
and B,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

In other words, random variables are
independent if and only if every event
involving the random variables are
independent. As with sequences of events,
usually it is assumed that random
variables are independent so that the rules
can be applied.

EXAMPLE: UNIQUE DICE

E17 Suppose that D1, D2, and D3 are all
independent rolls of a fair six sided die. What is the
chance that they are all different numbers?
Answer. First let us write it as several events. Let
s2 be the event that the second die matches the
first, and s3 be the event that the third die matches
either the first or the second.

s2 = (D2 = D1)

s3 = (D3 = D1) ∨ (D3 = D2)

Then the goal is to find the probability that neither
s2 nor s3 occurs. That is, the goal is to find

P(¬s2 ∧ ¬s3) = P(¬s2)P(¬s3 | ¬s2).

Since ¬s2 = (D2 ̸= D1), then no matter what
the value of D1 is, the chance that the second die
roll does not match the first die roll is 5/6. Hence
P(¬s2) = 5/6.

Similarly, conditioned on ¬s2 = (D2 ̸= D1) being
true, for D3 not to equal either D1 or D2 means
that it needs to roll one of the four numbers that
are left. Hence P(¬s3 | ¬s2) = 4/6.

Taken together:

P(¬s2 ∧ ¬s3) = (5/6)(4/6) = 5/9.

which is approximately 0.5555 .

ENCOUNTERS
63. INDEPENDENCE OF TWO
EVENTS

Suppose that P(a1) = 0.3 and P(a2) = 0.6,
where a1 and a2 are independent events.
What is P(a1a2)?

64. INDEPENDENCE OF THREE
EVENTS

Suppose that P(r) = P(s) = 0.4 and
P(t) = 0.6 where r, s, and t are independent
events. What is P(rst)?

65. TEN INDEPENDENT EVENTS

Let X1, . . . , X10 be independent rolls of a
fair six-sided die. What is the chance that
no 5 is rolled?

66. DIFFERENT ROLLS

Let Y1, . . . , Y100 each be independent rolls of
a fair 200-sided die numbered 1 through
200. What is the chance that none of the
Yi equal 7?

67. FLIPS OF A 0-1 COIN

Suppose that X1 and X2 are random
variables that are independent and equally
likely to be 0 or 1.
a. If X1 = 1, then what is the probability
that X2 = 1?
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b. If X1+X2 ≥ 1 then what is the probability
that X2 = 1?

68. CONDITIONING ON SUMS

Suppose that X1, X2, and X3 are
independent, with each equally likely to be
0 or 1.
a. Given that X1 +X2 +X3 ≥ 1, what is the
chance that X3 = 1?
b. Given that X1 +X2 +X3 ≥ 2, what is the
chance that X3 = 1?

69. THE ARCHERS

Four archers independently fire at a target.
Each has a 0.2 chance of striking the
target.
a. What is the chance that all the archers
miss the target?
b. What is the chance that at least one
archer hits the target?

70. FINDING A VACCINE

Five labs are independently working on a
vaccine for a particular disease. If each lab
has a 60% chance of developing a working
vaccine, what is the chance that at least
one lab succeeds?

71. FACTORY WOES

On a given day in a factory, there is a 3%
chance of a shutdown, a 1% chance of a
worker injury, and a 2% chance of a
delivery delay. If these three events are
independent, what is the chance that all
three occur on a given day?

72. HIGH SCHOOL SUCCESS

At a particular high school, each senior
student has a 88% chance of graduating.
If there are 100 students in the senior
class, what is the chance that every one
graduates?
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CHAPTER 6: BAYES’ RULE

T
HE SCOUT WAITED FOR ONE OF

two monster armies to approach.
The first monster army consisted
of 60% orcs, 30% ogres, and 10%

giants. The second monster army
consisted of 90% orcs and 10% ogres.
Initially, the Scout believed that the army
that was approaching was equally likely to
be one of the two armies. Then the Scout
saw an orc emerge from the woods. Now
what was the chance that the approaching
army was the first monster army?

FLIPPING
CONDITIONING
A pretty common mistake when working
with conditioning is to assume that P(s | r)
is the same as P(r | s).

Here is a simple example to see why this
fails. Suppose X ∼ d6 is a roll of a fair six
sided die. Then let s be the event that X ≥
2, and r be the event that X ≤ 4. Then the
probability of s given information r is

P(s | r) = P(X ≥ 2 | X ≤ 4)

=
P(X ≥ 2, X ≤ 4)

P(X ≤ 4)

=
3/6

4/6
=

3

4
= 75%.

On the other hand, the probability of r
given information s is

P(r | s) = P(X ≤ 4 | X ≥ 2)

=
P(X ≥ 2, X ≤ 4)

P(X ≥ 2)

=
3/6

5/6
=

3

5
= 60%.

The numerator will be the same for
P(s | r) and P(r | s), but the denominator
will be different for the two problems. Of
course, to convert from one to the other, it
is just necessary to multiply and divide by
the proper probabilities. This technique is
known as Bayes’ Rule.

T2 Bayes Rule
If s and r are events with positive probability,

P(s | r) = P(r | s)P(s)
P(r)

.

Bayes’ Rule
Bayes’ Rule is named after Thomas Bayes, an 18th
century statistician and Presbyterian minister who
wanted to understand how obtaining evidence
affected probabilities of events.

For such an important theorem, the
proof is very easy.

Proof. Let s and r be two events of nonzero
probability. Then

P(sr) = P(s | r)P(r) = P(r | s)P(s).

Dividing by P(r) finishes the proof.

SOLVING THE STORY

Let s denote the event that the
approaching army is the first monster
army, and r the event that the first
monster seen in the army is an Orc. Then
at the start there are three pieces of
information:

P(s) = 1/2,

P(r | s) = 0.6,

P(r | ¬s) = 0.9.

Therefore, it is much more likely to have
seen an Orc if it was not the first monster
army that approached. So it would seem
that having this piece of information r
should decrease the probability of s.

To make this idea precise, Bayes’ Rule
can be used to find P(s | r) from P(r | s).
However, one piece of the puzzle is missing:
what is P(r)?

To get this, first divide the event r into
the (disjoint) situation where both r and s
occur, and the situation where r occurs
but s does not:

P(r) = P(rs) + P(r(¬s)).
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Now use the conditional probability
formula to write these in terms of
probabilities given in the Story.

P(r) = P(r | s)P(s) + P(r | ¬s)P(¬s).

Now put in numbers to get:

P(r) = (0.6)(1/2) + (0.9)(1/2) = 0.75.

Finally, Bayes’ Rule can be used!

P(s | r) = P(r | s)P(s)
P(r)

= 0.6
1/2

3/4
= 0.4,

or 40% .

SOLVING PROBLEMS
WITH BAYES’ RULE
To tackle Bayes’ rule type of problems (or
probability problems in general,) the
following steps can be helpful.

a. Give names to all the events given in the
problem.

b. Write down for these events all the
probabilities given by the problem.

c. Write down the goal of the problem.

d. Use the probability formulas and Bayes’
Rule to move from the information given
to the goal.

The following examples illustrate this
approach. The first example considers the
problem of a medical trial of a drug.

E18 Suppose that a drug is believed to be either
effective 20% of the time (probability 20%) or 50%
of the time (probability 80%). The drug is
administered independently to five trial patients,
but the drug is ineffective for all trial patients.
Given this information, what is the chance that the
drug is effective 20% of the time?
Answer. Let s20 be the event that the drug is
effective 20% of the time. Let f be the event that
the drug is ineffective five times in a row. Then the
goal is to find

P(s20 | f).

First consider what is known. P(s20) = 0.2 with
no information. If the drug is effective 20% of the

time, the chance of failure five times in a row is
0.85. If the drug is effective 50% of the time, the
chance of failure five times in a row is 0.55. Hence

P(f | s20) = 0.85

P(f | ¬s20) = 0.55.

To use Bayes’ Rule to find P(s20 | f), it is also
necessary to know what P(f) is. As before, break
down the event into pieces to find this:

P(f) = P(fs20) + P(f(¬s20))
= P(s20)P(f | s20) + P(¬s20)P(f | ¬s20)
= (0.2)(0.8)5 + (0.8)(0.5)5

= 0.090536.

Hence Bayes’ Rule gives

P(s20 | f) = P(f | s20)
P(s20)
P(f)

= (0.2)(0.8)5/0.090536,

which is about 0.7238 .

The next example also comes from the
medical arena, but is focused on tests for
disease.

E19 A particular disease occurs in about 1 in every
100,000 people in a population. A test for the
disease returns true if you have the disease with
probability 90%. The test makes a mistake and
returns true even if you do not have the disease
with probability about 1%. Given that the test
returns positive, what is the chance that you
actually have the disease?
Answer. Let d be the event that you have the
disease, and t be the event that the test returns a
positive result. Then the goal is to find P(d | t). The
information given in the problem is

P(d) = 10−5

P(t | d) = 0.9

P(t | ¬d) = 0.01

To use Bayes’ Rule, it is necessary to also find
P(t). For this, once more use the fact that td and
t(¬d) partition t. In words, t occurs when either
both t and d occur or t and ¬d occur, and td and
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t(¬d) cannot both occur at the same time. Hence

P(t) = P(td) + P(t(¬d))
= P(t | d)P(d) + P(t | ¬d)P(¬d)
= (0.9)10−5 + (0.01)(1− 10−5)

≈ 0.01000 . . . .

To more significant digits, the answer is
0.0100089, nearly identical to the chance
that the test shows positive even though
you do not have the disease.

Remember that there are two different
ways to get a positive result: you have the
disease and the test is correct, or you do
not have the disease and the test is
incorrect. Since the chance of actually
having the disease is 10−5 and the chance
that the test is incorrect is much higher
(10−2, Bayes’ Rule shows that the most
likely reason the test would show that you
had the disease is that the test made a
mistake, not that you actually have the
disease (because it is so rare). That is the
reason for the medical phrase “we need to
run more tests“. A first positive test is
usually not solid proof that the subject is
positive, but indicates that more accurate
tests are probably a good idea to rule it
out.

TERMINOLOGY

When calculating P(s | r), the event r
occurring can be viewed as evidence in
favor (or disfavor) of s. Prior to learning
that r occurred, the probability of s is just
P(s). So this is called the prior probability.
After learning that r occurred, the
probability is P(s | r). So this is the
posterior probability.

D23 In considering P(s | r), call P(s) the prior
probability of s, and P(s | r) the posterior
probability of s given r.

THE LAW OF TOTAL
PROBABILITY
This idea of finding the probability of an
event by breaking it up into multiple

events is sometimes called the law of total
probability.

F16 The Law of Total Probability
Suppose s1, s2, . . . are a sequence of disjoint

events such that P (∨∞
i=1si) = 1, then

P(r) =
∞∑
i=1

P(r | si)P(si).

Proof. Let b = ∨∞
i=1si, and a = ¬b. Then a ∨

b = T, so r(a∨b) = r. Also, ra∧rb = r∧a∧¬b =
F, making ra and rb disjoint. Therefore

P(r) = P(r(a ∨ b))

= P(ra ∨ rb)

= P(ra) + P(rb).

Since P(b) = 1, P(a) = 1− 1 = 0, and P(ra) ≤
P(a) = 0. Hence

P(r) = P(rb)
= P(r (∨∞

i=1si))

= P(∨∞
i=1rsi)

=
∞∑
i=1

P(rsi)

=
∞∑
i=1

P(r | si)P(si)

E20 Suppose for all i ∈ {1, 2, . . .} it holds that
P(X = i) = (1/2)i. Suppose P(r | X = i) = (2/3)i.
what is P(r)?
Answer. The events (X = i) are disjoint. Since∑∞

i=1(1/2)
i = 1, the law of total probability

applies.

P(r) =
∞∑
i=1

P(r | X = i)P(X = i)

=

∞∑
i=1

(2/3)i(1/2)i

=

∞∑
i=1

(1/3)i

=
1/3

1− 1/3
=

1

2
,

so the event r occurs with probability 50% .
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The Law of Total Probability was written
for an infinite sequence of events, but by
using the trick of making
sn+1 = sn+2 = · · · = F, the law also applies to
any finite set of events as well.

ENCOUNTERS
73. BAYES’ RULE

Suppose that P(X = 1) = 0.5, P(X = 2) = 0.3,
P(X = 3) = 0.2, and that P(r | X) = 1/X.
a. What is P(r)?
b. What is P(X = 1 | r)?

74. PROBABILITY VECTORS

Suppose P(Y = i) = vi where v is the
probability vector (0.2, 0.4, 0.4). Next,
suppose P(s | Y ) = Y 2/9. Then what is
P(Y = 1 | s)?

75. MACHINE PROBLEMS

Machine A has a 1% chance of making a
widget with an error, while Machine B has
a 5% chance of error.

If Machine A makes 70% of the widgets
and Machine B makes 30%, what is the
chance that a widget with an error came
from Machine A?

76. BUILDING CARS

An automotive company sources their
parts from five companies. Each part is
equally likely to have come from the each
company. If the chance of the part being
malformed is 0.5%, 0.5%, 1%, 1%, 2% for each
of the five companies, what is the chance
that a malformed part came from the first
company?

77. CHOLESTEROL

Suppose that in a population, there is a
3% chance of having a genetic marker that
doubles the chance of having high
cholesterol. So if H is the event that the
person has high cholesterol, and G is the
event that they have the genetic marker,
then

P(H | G) = 2P(H | GC).

Given that someone has high cholesterol,
what is the chance that they have the
marker?

78. GENETICS

Suppose that in a population, there is a
5% chance of having a genetic marker that
multiplies the chance of having asthma by
1.1. So if A is the event that the person
has asthma, and G is the event that they
have the genetic marker, then

P(A | G) = 1.1P(A | GC).

Given that someone has asthma, what is
the chance that they have the marker?
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CHAPTER 7: RANDOM VARIABLES

T
THE RULER OF DAVORNIA SENT five
emissaries to neighboring lands to
seek out help against the pirates
of the Biryian Sea. The Ruler

believed that each emissary had a 80%
chance independent of the others of
making it to their destination successfully.
What is the distribution of the number of
emissaries that successfully reach their
destination?

RANDOM VARIABLES
Our focus up until now has been on
events; now consider the random variable.

D24 Say that X is a random variable if there
exists a collection of sets FX such that P(X ∈ A)

is defined for all A ∈ FX .

For example, in the story that started
this chapter, let

N = number of successful emissaries.

Then N is a random variable. Because
N ∈ {0, 1, 2, . . . , 5} with probability 1, the
collection of sets that can be assigned
probabilities is any subset of {0, 1, . . . , 5}.

D25 If P(X ∈ A) is defined, say that A is
measurable with respect to X .

The function that takes a set A and
returns P(X ∈ A) is called the distribution
of the random variable.

D26 The distribution of a random variable X

with measurable sets A is the function
PX : FX → [0, 1] defined as:

PX(A) = P(X ∈ A).

Write X ∼ PX .

E21 Suppose P(X = 1) = 0.2,P(X = 2) = P(X =

3) = 0.4.

1. What is PX({2, 3})?

2. What is PX(A) for a set A?
Answer. 1. From the information given,
PX({2, 3}) = P(X ∈ {2, 3}) = P(X = 2) + P(X =

3) = 0.4 + 0.4 = 0.8.

2. More generally, for any set A,

P(X ∈ A) = 0.2I(1 ∈ A)+0.4I(2 ∈ A)+0.4I(3 ∈ A).

Some distributions occur often enough
that it makes sense to give them names.
Consider the source of random variables
comes from rolling dice.

D27 Write X ∼ dn if X to mean X is a random
variable such that P(X = i) = 1/n for all
i ∈ {1, 2, . . . , n}. Say that X is the roll of a fair
n-sided die.

The symbol ∼ is used to denote the
distribution of a random variable. The
random variable name goes on the left,
and the name of the distribution goes on
the right.

F17 If X ∼ dn then

PX(A) =

n∑
i=1

1

n
I(i ∈ A).

This works because

P(X ∈ {1, . . . , n}) = 1.

In fact, this sort of construction works for
any random variable that only takes on a
finite or countable number of values with
probability 1. This type of random variable
is called discrete.

D28 If there exists a sequence a1, a2, . . . such that
P(X ∈ {a1, a2, . . .) = 1, then call X a discrete
random variable.

F18 For a discrete random variable X with P(X ∈
{a1, a2, . . .}),

PX(A) =
∑
ai

P(X = ai)I(ai ∈ A).

CHAPTER 7: RANDOM VARIABLES31



So for a discrete random variable X, to
determine the distribution of X, it is
enough to say what P(X = i) is for all i
such that this value is positive.

SOLVING THE STORY

In the story, each of five emissaries was
sent to a neighboring land. Each journey
was success independent of the others
with probability 80%.

The letter S can be used to denote a
successful journey, while F can be used to
denote a failed journey. So

SSSFS

denotes that journeys 1, 2, 3, and 5 were
successful, while journey 4 was a failure.
so four journeys were a success here so,
N = 4.

Using independence,

P(SSSFS) = (0.8)(0.8)(0.8)(0.2)(0.8) = (0.8)4(0.2)1.

There are 5 outcomes with N = 4,
namely,
{FSSSS, SFSSS, SSFSS, SSSFS, SSSSF}.
Each has probability (0.8)4(0.2) of
occurring. Hence
P(N = 4) = 5(0.8)4(0.2) = 0.4096.

A bit of combinatorics tells us how to
find the number of five letter sequences
with exactly i S letters and 5− i F letters.

D29 The number of n letter sequences with
exactly i letters S and n− i letters F are called the
binomial coefficients, and are written(

n

i

)
.

The binomial coefficient
(
n
i

)
is read aloud

as “n choose i”.

F19 The binomial coefficients can be calculated as(
n

i

)
=

(
n

n− i

)
=

n!

i!(n− i)!
.

(Here n! is the factorial function, where n! = n(n −
1) · · · 1 and 0! = 1.)

For instance, the number of five letter
sequences with 3 letters S and 2 letters F
are (

5

3

)
=

5!

3!2!
=

5 · 4 · 3 · 2 · 1
3 · 2 · 1 · 2 · 1

= 10.

A similar calculation allows determination
of all the probabilities of all the possible
values of X.

Distribution ofN
i P(N = i)
0 0.00032
1 0.00640
2 0.05120
3 0.20480
4 0.40960
5 0.32768

INDEPENDENCE OF
RANDOM VARIABLES
For two events to be independent, the
probability that both occurs is the product
of the probability that each event occurs.

For two random variables to be
independent, for all pairs of measurable
sets, the events that the two random
variables are in these sets must be
independent.

D30 For random variables X and Y to be
independent, it must hold for all A measurable with
respect to X and B measurable with respect to Y ,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

If X ∈ {1, . . . , 6} and Y ∈ {1, . . . , 4}, there
are 26 subsets of {1, . . . , 6} and 24 subsets
of {1, . . . 4}. That means you would have to
check 210 = 1024 pairs of subsets to check
independence! The following result cuts
down on what needs to be checked
considerably.

F20 Suppose P(X ∈ {x1, x2, . . .}) = 1 and P(Y ∈
{y1, y2, . . .}) = 1. Then X and Y are independent
if and only if

P(X = xi, Y = yj) = P(X = xi)P(Y = yj)

for all i and j.
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Proof. One direction is straightforward: if
A = {xi} and B = {yj}, then independence
gives

P(X = xi, Y = yj) = P(X = xi)P(Y = yj)

Now suppose that
P(X = xi, Y = yj) = P(X = xi)P(Y = yj)
holds for all i and j and that A and B are
arbitrary measurable sets. Then

P(X ∈ A, Y ∈ B) =
∑

xi∈A,yj∈B
P(X = xi, Y = yj)

=
∑
xi∈A

∑
yj∈B

P(X = xi)P(Y = yj)

where the sum over xi and yj can be
broken up into two iterated sums using
Tonelli’s Theorem. Then

P(X ∈ A, Y ∈ B) =
∑
xi∈A

P(X = xi)
∑
yj∈B

P(Y = yj)

=
∑
xi∈A

P(X = xi)P(Y ∈ B)

= P(Y ∈ B)
∑
xi∈A

P(X = xi)

= P(Y ∈ B)P(X ∈ A)

as desired.

For multiple random variables,
independence is similar to what was seen
before for events.

D31 A set of random variables X1, . . . , Xn are
independent if for all k ≤ n and all k-tuples of
measurable sets A1, . . . , Ak

P

(
k∨

i=1

Xi ∈ Ai

)
=

k∏
i=1

P(Xi ∈ Ai).

D32 A sequence of random variables X1, X2, . . .

are independent if for all n ∈ {2, 3, . . .},
X1, . . . , Xn are independent.

A common situation is when all of a
sequence of random variables are both
independent and have the same
distribution.

D33 A sequence of random variables X1, X2, . . .

are independent and identically distributed (aka
iid) if they are independent, and for all i and j,
Xi ∼ Xj .

σ-ALGEBRAS OF SETS
In this section some of the consequences
of the definition of a random variable are
explored. Recall that a set of logical
statements F forms a σ-algebra if

1) (s ∈ F) → (¬s ∈ F), and
2) (s1, s2,∈ F) → (∨∞

i=1si ∈ F) .
For a random variable X, X ∈ A needs to

be an event. Recall that
(X /∈ A) = (X ∈ AC), where AC is the
complement of A. Also, if x is in at least
one of A1, A2, . . ., then x ∈ ∪n

i=1Ai. Putting
this together:

1) (X ∈ A) ∈ F → (X ∈ AC) ∈ F .
2)
∧∞

i=1(X ∈ Ai) ∈ F →
⋃∞

i=1Ai ∈ F .
That inspires the definition of a

σ-algebra of sets, to avoid having to write
X ∈ A in multiple places.

D34 Say that a nonempty collection F of sets is a
σ-algebra of sets if

1. (∀A ∈ F)(AC ∈ F).

2. (∀A1, A2, . . . ∈ F)(A1 ∪A2 ∪ . . . ∈ F).

The point is that no matter what random
variable you have, the sets that are
measurable with respect to X form a
σ-algebra.

F21 For a random variable X , the sets measurable
with respect to X form a σ-algebra.

Any σ-algebra of sets contains the empty
set.

F22 Any σ-algebra F contains ∅.

Proof. A σ-algebra is nonempty, so let A ∈
F . Then AC is also in F . Which means

[AC ∪A ∪A ∪A ∪ · · · ]C ∈ F ,

but
[AC ∪A ∪A ∪A ∪ · · · ]C = ∅,

so the result is shown.
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E22 Suppose P(X = 1) = 0.2, P(X = 2) = 0.3,
and P(X = 3) = 0.5. Show that

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} ⊆ FX .

Answer. It holds that ∅ ∈ FX since it is always an
element of a σ-algebra.

The reason is that (X = 1) = (X ∈ {1}), (X =

2) = (X ∈ {2}), and (X = 3) = (X ∈ {3}) so {1},
{2} and {3} are measurable sets.

That means

{1} ∪ {2} ∪ ∅ ∪ ∅ ∪ · · · ∈ FX

{1} ∪ {3} ∪ ∅ ∪ ∅ ∪ · · · ∈ FX

{1} ∪ {2} ∪ {3} ∪ ∅ ∪ ∅ ∪ · · · ∈ FX ,

which completes the proof.

CONTINUOUS RANDOM
VARIABLES
Unlike discrete random variables, which
have positive probability of hitting
particular values, continuous random
variables always have 0 chance of landing
on a particular number! In fact, that is
how they are defined.

D35 A real-valued random variable X is
continuous if for all values a, P(X = a) = 0.

How can this happen? Consider trying to
draw a point in the interval (0, 1] (so all
numbers from 0 up to 1 including 1 but
not 0.

Begin by flipping a fair coin. Then if it is
tails, move to the left half of the interval
(0, 1/2] and if heads move to the right half
of the interval (1/2, 1]. Flip the coin again
and repeat, moving either to the left or to
the right hand side of the interval as the
coin determines.

If an iid sequence of coin flips are used,
it can be shown that the chance of landing
on a particular number (like 1/3) is 0. This
is because with each flip of the coin, the
chance that a particular value is landed on
is reduced by a factor of 1/2, and the coin
is being flipping an infinite number of
times!

This gives us a standard uniform random
variable, which will be discussed further in
the next chapter.

ENCOUNTERS
79. SIX ARROWS

An archer shoots six arrows at a target.
Each hits (independently of the others)
with probability 15%. What is the chance
that at least five arrows hit?

80. OZONE

The air quality in a city has a 70% chance
of being good, 25% of being medium, and
5% chance of being bad. What is the
chance that in the next three days, at least
two days are medium air quality?

81. COIN FLIPS

A bored merchant with a coin starts
flipping the coin until the first head is seen.
If G is the number of flips (including the
final one) until a head is seen, then

P(G = i) = (0.2)i−1(0.8),

for all i ∈ {1, 2, . . .}.
Verify that

P(G ∈ {1, 2, . . .}) = 1.

82. SCOUTING FOR WATER

A camp is scouting for water. Each day
they send out a scouting party, and there
is a 10% chance that they find some. What
is the chance that they need at least three
days to find water?

83. MEASURABLE SETS

Suppose [3, 4], [4, 5), and [5, 6) are
measurable with respect to X. Prove that

{[3, 5), [3, 6), [4, 6)} ⊆ FX .

84. MORE MEASURABLE SETS

Suppose [−1, 1], [−2, 2], [−3, 3], . . . are in F .
Show that (−∞,∞) ∈ F .

85. THE TRIANGLE

Suppose that (X,Y ) are equally likely to be
(0, 0), (0, 1), or (1, 0).
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a. What is P(X = 0)?
b. What is P(Y = 0)?
c. What is P(X = 0, Y = 0)?
d. Are X and Y independent?

86. THE RECTANGLE

Suppose that (X,Y ) has the following
distribution.

(x, y) P((X,Y ) = (x, y))
(-1, -1) 0.04
(-1, 1) 0.16
(1, -1) 0.16
(1, 1) 0.64

Show that X and Y are iid.

87. TRANSPORT

A bus arrives after a time given by the
continuous random variable T .
a. What is P(T = 4)?
b. If P(T < 4) = 0.4, what is P(T ≤ 4)?
c. If P(T < 4) = 0.4, what is P(T > 4)?

88. MANUFACTURING TIME

Suppose that a product takes random time
T to manufacture, and has a number of
defects given by N . Suppose that
P(T < 4, N = 3) = 0.3, P(T < 0.4) = 0.9 and
P(N = 3) = 0.4. Are N and T independent
random variables?
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CHAPTER 8: UNIFORM RANDOM
VARIABLES

B
UILDING COSTS FOR A NEW castle
continued to spiral out of control.
The Architect was currently
modeling the expenditures as

uniform over [3000, 5000] gold pieces. What
is the chance the effort would cost at least
4500 gold pieces?

ROLLING DICE
Some distributions occur often enough
that it makes sense to give them names.
Consider the source of random variables
that comes from rolling dice.

D36 Write X ∼ dn if X to mean X is a random
variable such that P(X = i) = 1/n for all
i ∈ {1, 2, . . . , n}. Say that X is the roll of a fair
n-sided die.

The symbol ∼ is used to denote the
distribution of a random variable. The
random variable name goes on the left,
and the name of the distribution goes on
the right.

F23 If X ∼ dn then

PX(A) =

n∑
i=1

1

n
I(i ∈ A).

This works because

P(X ∈ {1, . . . , n}) = 1.

In fact, this sort of construction works for
any random variable that only takes on a
finite or countable number of values with
probability 1. This type of random variable
is called discrete.

D37 If there exists a sequence a1, a2, . . . such that
P(X ∈ {a1, a2, . . .) = 1, then call X a discrete
random variable.

F24 For a discrete random variable X with P(X ∈
{a1, a2, . . .}),

PX(A) =
∑
ai

P(X = ai)I(ai ∈ A).

THE DISCRETE
UNIFORM
DISTRIBUTION
The distributions of the form dn are a
special case of distribution called uniform.

Uniform means one probability
The Latin prefix for one is uni (which is while
unicorns have one horn and unicycles have one
wheel.) Uniform distributions over a1, . . . , an} have
a single value 1/n for the probability that X = ai.

Recall that the counting measure #(A) of
a set A is the number of elements in the
set A. With this notation, the general
uniform measure over a finite set is as
follows.

D38 For a finite set A, say X has uniform
measure over A if for all a

P(X = a) =
1

#(A)
I(a ∈ A).

Write X ∼ Unif(A).

The indicator is essential to the uniform
From I(a ∈ A) it is possible to find 1/#(A) (that is
the normalizing constant) but #(A) is not enough
information to recover I(a ∈ A). So it is the
I(a ∈ A) part that is most important in the
uniform distribution!

As a distribution function, this looks as
follows.

F25 For a finite set A, if X ∼ Unif(A), then

PX(B) = P(X ∈ B) =
#(AB)

#(A)
.
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INTERSECTION OF SETS

In the above definition AB = A ∩ B refers
to the intersection of the two sets A and B.
The intersection consists of elements that
are in both A and B, so it is analogous to
logical AND.

D39 The intersection of two sets A and B is
defined as

(x ∈ A ∩B) = ((x ∈ A) ∧ (x ∈ B)).

Like logical AND, a comma can be used to indicate
intersection of sets, or one can simply write the two
sets one after the other. That is,

A ∩B = A,B = AB.

Since logical AND commutes, so does
intersection.

D40 For any two sets A and B,

AB = BA.

Another useful little fact about
intersections that will be used extensively
is that the intersection of a set with itself is
just the original set.

F26 For any set A, AA = A.

Proof. For any logical statement, s, it holds
that ss = s. Hence for any set A

(x ∈ AA) = (x ∈ A)(x ∈ A) = (x ∈ A),

so the sets A and AA are identical.

Note: this looks a lot like our conditional
probability formula!

E23 Suppose X ∼ d6. Then

P(X ∈ {2, 5}) = #({2, 5})
#(1, . . . , 6)

=
2

6
= 0.3333 . . . .

F27 For n ∈ {1, 2, . . .},

dn ∼ Unif({1, . . . , n}).

Consider the following example.

E24 There are 73 animal traps on a factory
grounds, of which 4 have animals trapped inside. If
a trap is inspected uniformly at random, what is the
chance the trap contains a trapped animal?
Answer. Let A = {a1, a2, a3, a4} be the numbers of
the traps that contain animals. For
X ∼ Unif({1, . . . , 73}, the question is asking what
is P(X ∈ A)? Because X is uniform, and
A ⊆ {1, . . . , 73} this is

#(A)

#({1, . . . , 73})
=

4

73
,

or about 0.05479 . Only the size of A matters
here, not the actual traps that contain the animals.

THE CONTINUOUS
UNIFORM
DISTRIBUTION
The Discrete Uniform distribution can be
thought of as the probability version of
counting measure. What if a different
measure is used?

Lebesgue measure can be thought of as
length in one dimension, area in two
dimensions, volume in three dimensions,
and so on. Suppose Leb denotes Lebesgue
measure the same way # denotes counting
measure. The following are some examples
of Lebesgue measure.

4 7A

(4, 0)

(7, 1)

(7, 0)
B

In the above picture, A is a
one-dimensional interval, and so the
Lebesgue measure is the length of the
interval, found by subtracting the smaller
endpoint from the greater.

Leb(A) = 7− 4 = 3.

The area B is a triangle, and its Lebesgue
measure is the area o the triangle, half of
the base times the height.

Leb(B) = (1/2)(3)(1) = 1.5.
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The Continuous Uniform distribution
can be thought of as the probability
version of Lebesgue measure, where each
set B is assigned probability proportional
to the Lebesgue measure of its intersection
with A.

For a set A with Leb(A) > 0, say that
X ∼ Unif(A) if

P(X ∈ B) =
Leb(AB)

Leb(A)
.

No uniform distribution over positive
integers
There is no such thing as a uniform distribution
over the positive integers {1, 2, . . .}. The positive
integers has infinite counting measure, but
Lebesgue measure 0, so it cannot be either a
discrete or a continuous uniform!

In one dimension, this reduces to the
following.

D41 For nonempty finite interval [a, b], say X has
uniform measure over [a, b] if for all a ≤ c < d ≤
b,

P(X ∈ [c, d]) =
d− c

b− a
.

Write X ∼ Unif([a, b]).

Note that b− a is the Lebesgue measure of
[a, b], and d − c is the Lebesgue measure of
d− c.

THE STANDARD UNIFORM

The continuous uniform over the interval
[0, 1] is the standard uniform.

D42 Let X ∼ Unif([0, 1]). Then say X is a
standard uniform.

UNIFORM PROPERTIES
Whether you are working with discrete or
continuous uniforms, uniforms all have
certain properties in common.

F28 Let X ∼ Unif(A). Then the following hold.
1) P(X ∈ A) = 1.
2) P(X ∈ B) = P(X ∈ A ∩B).

In words, these say that the chance that
X ∼ Unif(A) falls into A is 1, and that for X
to fall into B, then X must fall into A and
B.

Proof. Let m be counting measure if A is
finite, and Lebesgue measure if Leb(A) > 0.

Then

P(X ∈ A) =
m(A ∩A)

m(A)
=

m(A)

m(A)

For the second part,

P(X ∈ B) =
m(AB)

m(A)
=

m(AAB)

m(A)
= P(X ∈ A∩B).

Also, conditioning on the value of the
uniform leaves a new uniform random
variable.

F29 Suppose X ∼ Unif(A). Then

[X | X ∈ B] ∼ Unif(A ∩B).

Proof. Let A,B,C be measurable sets
where P(X ∈ B) > 0. Then

P(X ∈ C | X ∈ B) =
P(X ∈ C,X ∈ B)

P(X ∈ B)

=
P(X ∈ ABC)

m(AB)/m(A)

=
m(ABC)/m(A)

m(AB)/m(A)

=
m(ABC)

m(AB)
,

which is the probability a random variable
with distribution Unif(AB) falls into C.

E25 Suppose that X ∼ d10 satisfies X ≤ 8. What
is the distribution of X?
Answer. Note that
{1, . . . , 10} ∩ {1, . . . , 8} = {1, . . . , 8}. So

[X | X ∈ {1, . . . , 8}] ∼ d8 .
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SOLVING THE STORY

In the story, the cost is

C ∼ Unif([3000, 5000]).

The question is what is P(C ≥ 4500)? From
our properties of uniforms, this is

P(C ≥ 4500) = P(C ∈ [4500,∞))

= P(C ∈ [4500,∞) ∩ [3000, 5000])

= P(C ∈ [4500, 5000])

=
5000− 4500

5000− 3000
=

500

2000
,

which is 25% .

Le Poisson

89. SUMMING THREE DICE

Suppose D1 ∼ d10, D2 ∼ d20 and D3 ∼ d6
are independent. What is

P(D1 +D2 +D3 = 36)?

90. MORE SUMS OF THREE DICE

Suppose D1 ∼ d10, D2 ∼ d20 and D3 ∼ d6
are independent. What is

P(D1 +D2 +D3 = 35)?

91. STANDARD UNIFORM

For U ∼ Unif([0, 1]), find:
a. P(U ≤ 0.7).
b. P(U ≤ −0.7).
c. P(U ≤ 1.3).

92. WIDER UNIFORM

For Y ∼ Unif([−1, 1]), find

a. P(Y ≤ 0.7).
b. P(Y ≤ −0.7).
c. P(Y ≤ 1.3).

93. FUNCTIONS OF A UNIFORM

Prove for the discrete uniform
A ∼ Unif({0, 1, 2}) that A2 ∼ Unif({0, 1, 4}).

94. ABSOLUTELY UNIFORM

Suppose that T ∼ Unif({−2,−1, 1, 2}). Prove
that T ∼ Unif({1, 2}).

95. CONDITIONAL UNIFORM

Suppose that Y ∼ d20. What is the
distribution of:
a. Y given that Y ≥ 5.
b. Y given that Y < 5.

96. MORE CONDITIONAL
UNIFORMS

Suppose W ∼ Unif([−10, 10]).
a. What is the distribution of W conditioned
on W ≥ 5?
b. What is the distribution of W conditioned
on W < 5?

97. DEFECTIVE TESTING

In a box with 20 parts, 2 are defective. An
inspector picks a part out of the box
uniformly at random. What is the
probability that the inspector finds a
defective part?

98. A DEEPER TEST

In a box with 20 parts, 2 are defective. An
inspector picks two parts out of the box
uniformly at random without replacement.
What is the probability that the inspector
finds a defective part?
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CHAPTER 9: FUNCTIONS OF RANDOM
VARIABLES

T
HE PARTY OF ADVENTURERS were
waiting by the road because they
had heard that a mob of bugbears
was going to happen by. Soon

they grew tired of waiting, and asked the
Wizard when they could expect some
action. The Wizard sighed, saying that
arcane magic had given a model of the
bugbears arrival time as an exponential
random variable with rate 1.3 per day.
They had already waited one day with no
results. What is the chance that they
would have to wait yet another day?

FUNCTIONS OF
RANDOM VARIABLES
A standard exponential random variable is
created by taking the negative of the
natural logarithm of a standard uniform
random variable. To understand how to
characterize these new distributions, it
helps to have a method for determining
when two different random variables have
the same distribution.

THE CUMULATIVE DISTRIBUTION
FUNCTION

A distribution of a random variable X is a
function that takes any set A and returns
the probability that X ∈ A. Checking all
such subsets can be very difficult, but it
turns out that not every subset probability
needs to be checked. The only subsets that
need be considered are of the form (−∞, a].
Note that

P(X ∈ (−∞, a]) = P(X ≤ a).

This motivates the following definition.

D43 The cumulative distribution function or cdf
of a random variable X is defined as

cdfX(a) = P(X ≤ a).

The key reason the cdf is useful is that
if two random variables have the same cdf,
then they have the same distribution.

F30 If X and Y have the same cdf, then X ∼ Y .

FUNCTIONS KEEP OR DESTROY
INFORMATION

To understand how functions change
random variables, it is important to know
that functions can only keep the same
amount of information, or possibly less
informtion about their input.

For instance, consider the absolute value
function y = x. If x = 3, then y = 3, and if
x = −3, y = 3. So knowing that y = 3 has
lost some information about x, namely, the
sign of x is now unknown.

Not all functions destroy information.
One-to-one functions have exactly the
same amount of information in the output
that was in the input.

Consider a random variable X that is
uniform over [−1, 1]. Let Y = X + 3. Here
x+3 is a one-to-one function, so Y contains
exactly the same information as there is in
X. Given the value of Y , it is possible to
figure out the value of X exactly.

On the other hand, if W = |X|, then W
contains less information than X did. If
W = 0.3, then either X = 0.3 or X = −0.3.

In general, if X is a random variable and
f is a function, the information in f(X) is
the same or less than the information in X.
Consider the following example.

E26 Suppose X ∼ Unif([−1, 1]). What is the
distribution of W = |X|?
Answer. Find the cdf of W . Since absolute value is
always nonnegative, if a < 0 then P(W ≤ a) = 0.

Suppose a ≥ 1. Then the absolute value of a
number in [−1, 1] is at most 1, so P(W ≤ a) = 1.
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Finally, consider a ∈ [0, 1].

P(W ≤ a) = P(|X| ≤ a)

= P(−a ≤ X ≤ a)

=
a− (−a)

1− (−1)

=
2a

2
= a.

Hence cdfW (a) = aI(a ∈ [0, 1]) + I(a > 1). That
is the cdf of a standard uniform random variable
over [0, 1], so

W ∼ Unif([0, 1]).

Here is a different function that converts
a continuous uniform to a discrete random
variable.

E27 Suppose U ∼ Unif([0, 1]). Consider

W = I(U ≤ 0.3) + 4 · I(U > 0.3).

Find P(W = 1) and P(W = 4).
Answer. Since W can only have value 1 or 4, it is a
discrete random variable. Here
P(W = 1) = P(U ≤ 0.3) = 0.3, and
P(W = 4) = P(U > 0.3) = 0.7, so the distribution
is determined by

P(W = 1) = 0.3

P(W = 4) = 0.7.

THE BERNOULLI
DISTRIBUTION
In some ways the Bernoulli distribution is
the simplest random variable, as it can
only take on two values, 0 and 1.

D44 Let U ∼ Unif([0, 1]). Say that B has the
Bernoulli distribution with parameter p or is an
indicator random variable, and write
B ∼ Bern(p), if B = I(U ≤ p).

From the definition follows the
immediate fact.

F31 For B ∼ Bern(p), P(B = 1) = p and P(B =

0) = 1− p.

THE EXPONENTIAL
DISTRIBUTION
The natural logarithm of a number in (0, 1]
is negative. So for U ∈ (0, 1] (which it is
with probability 1), − ln(U) ∈ [0,∞). That
gives us the following definition.

D45 Let U ∼ Unif((0, 1]). Then for

T = − ln(U),

T has the standard exponential distribution.

A parameter called the rate can modify
the standard exponential distribution. The
rate divides a standard random variable to
get the new value.

D46 Suppose W is a standard exponential random
variable and λ > 0. Then T = W/λ has an
exponential distribution with rate λ. Write
T ∼ Exp(λ).

This is a continuous random variable,
since for any a,

P(T = a) = P(− ln(U)/λ = a)

= P(U = exp(−λa) = 0).

This exponential distribution has the
following cdf.

SOLVING THE STORY PROBLEM

In the story of the wait for the bugbears,
the time of the bugbears arrival was being
modeled as T ∼ Exp(1.3/day). They had
waiting one day already, and wondered
what was the chance that they would be
waiting one day more. In notation, the goal
is to find

P(T ≥ 2 | T ≥ 1).

By the conditional probability formula, this
is

P(T ≥ 2 | T ≥ 1) =
P(T ≥ 2, T ≥ 1)

P(T ≥ 1)

=
P(T ≥ 2, T ≥ 1)

P(T ≥ 1)

=
exp(−2(1.3))

exp(−1(1.3))

= exp(−1.3).
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Therefore the answer is exp(−1.3) which
is about 0.2725 .

THE FUNDAMENTAL
THEOREM OF
SIMULATION
Any function of U ∼ Unif([0, 1]) will itself be
a random variable. It turns out that this is
the only way to obtain a real-valued
random variable! This result is known as
the Fundamental Theorem of Simulation.

T3 The Fundamental Theorem of Simulation. For
any real-valued random variable X , there exists a
(measurable) function f such that X = f(U),
where U ∼ Unif([0, 1]).

THE SELF-REPLICATING
UNIFORM
Recal that if D1, D2, D3, . . . is an iid stream
of Unif({1, 2, . . . , 10}), then if those numbers
are used to form the digits of U , then U ∼
Unif([0, 1]). For instance, it might be that

U = 0.661133560833984572979351 . . . .

Now suppose instead that two uniforms
over [0, 1] are desired. Well, just use the
odd dice rolls for U1, and the even dice
rolls for U ′

2. The result is

U1 = 0.613503947995 . . . U ′
2 = 0.613683852731 . . .

Each die roll was independent of the
others, so U1 and U2 are independent!

Take it further! Use the digits of U ′
2 to

create U2 and U ′
3. Use the digits of U ′

3 to
create U3 and U ′

4. And so on!
The result is an independent, identically

distributed stream of uniform random
variables

U1, U2, . . . .

Given an infinite sequence of uniforms
gives a lot more flexibility in designing
random variables.

D47 Let U1, U2, . . . be iid Unif([0, 1]). Then a
real-valued random variable is any computable

function f applied to U1, U2, . . .).

99. FINDING A CDF

If X ∼ Unif([−1, 2]), find the cdf of |X|.

100. FINDING ANOTHER CDF

If W ∼ Unif([−2, 4]), find the cdf of W 2.

101. INDICATORS OF A UNIFORM

If W ∼ Unif([−2, 4]) and A = I(W ≤ 3), what
is the distribution of W?

102. GRAPHING THE CDF

If R ∼ Bern(1/2), plot the cdf of 3R+ 1.

103. SCALING AND SHIFTING
UNIFORMS

Consider U1 ∼ Unif([3, 8]) and
U2 ∼ Unif([0, 1]). Show that U1 and 5U2 + 3
have the same cdf.

104. EXPONENTIAL
PROBABILITIES

For T ∼ Exp(2), find P(T ≤ 2).

105. SCALING EXPONENTIALS

Recall that if U ∼ Unif([0, 1]), − ln(U)/λ ∼
Exp(λ). Use this to prove that if X ∼ Exp(λ),
X/c ∼ Exp(cλ) for any nonnegative constant
c.

106. A TRIPLE PROBLEM

Suppose B1, B2, . . . are iid Bern(0.3).
a. What triples (b1, b2, b3) ∈ {0, 1}3 satisfy
b1 ≥ max(b2, b3)?
b. What is P(B1 ≥ max(B2, B3))?

107. CONDITIONAL
EXPECTATIONS

Suppose T ∼ Exp(2.4). What is P(T ≥ 4 | T ≥
1)?

108. WHAT DOES IID MEAN?
Suppose X1, X2, X3, . . . are iid. State
whether the following are true for all
distributions of (X1, X2, X3) or false if there
is at least one distributon of (X1, X2, X3)
where the statement is false.
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a. X1, X2, and X3 are independent random
variables.
b. max(X1, X2), X1, and X2 are independent
random variables.
c. X1 and X17 have the same distribution.

109. THE CEILING FUNCTION

Let ⌈x⌉ be the ceiling function that is the
smallest integer greater than or equal to x.
So ⌈4.3⌉ = ⌈5⌉ = 5. Note that for an integer
i, ⌈x⌉ = i if and only if i − 1 < x ≤ i. For
U ∼ Unif([0, 1]) find
a. P(⌈2U⌉ = 2)
b. P(⌈2U⌉ = 1)
c. P(⌈2U⌉ = 0)

110. CONTINUOUS TO DISCRETE

For U1 ∼ Unif((0, 1]), what is the
distribution of N = ⌈nU⌉ for a positive
integer n?
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CHAPTER 10: THE BERNOULLI PROCESS

T
THE HERBALIST WOULD OFTEN

venture out into the forest
to collect mushrooms. Each trip
gave an independent 20% chance

of finding a useful bit of fungi. If they went
out 10 times, what was the chance that at
most three trips were successful?

STOCHASTIC
PROCESSES
Whenever you have one or more random
variables, you have a stochastic process.

D48 A collection of random variables is a
stochastic process.

One basic type of stochastic process is
an independent, identically distributed (iid)
sequence of random variables.

For instance, consider

B1, B2, . . . ,∼ Bern(p),

where the {Bi} are independent. Recall
that Bi ∼ Bern(p) means that P(Bi = 1) = p
and P(Bi = 0) = 1− p.

This stochastic process is important
enough that it gets its own name.

D49 An iid B1, B2, . . . sequence of Bern(p) is
called a Bernoulli process with parameter p.

Now only consider the i values such that
Bi = 1. These form a subset of {1, 2, . . .}
that can be thought of as a set of points
lying within the positive integers. Call this
set a Bernoulli point process.

D50 A Bernoulli point process with parameter
p is the subset of positive integers

B = {i : Bi = 1},

where B1, B2, . . . are iid Bern(p).

Because Bi can represent an experiment
with two outcomes, often Bi = 1 is referred

to as a success, while Bi = 0 is referred to
as a failure.

E28 Suppose B1, B2, . . . = 0, 0, 1, 1, 0, 1, . . .. Then

B = {3, 4, 6, . . .}.

It is helpful to have a function that
returns the smallest number in B, or ∞ if
B is empty. This function is called the
infimum, and is often abbreviated inf.

D51 For B a subset of {1, 2, . . .}, the infimum of
B is the smallest integer in B if B is nonempty, or
∞ otherwise.

Infimum
More generally, the infimum of a set S is the
greatest lower bound on all the elements of S, or
−∞ if there is no lower bound on S, or ∞ if S is
empty.

There are several questions that can be
asked about a Bernoulli point process.

• How many points are in {1, . . . , n}? (How
many successes were there in the first n
trials? What is B1 + · · ·+Bn?)

• How many trials did it take until the first
success? (What is inf(B)?)

• More generally, for r a positive integer,
how many trials did it take until the rth
success? (What is
inf{n : B1 + · · ·+Bn = r})?

Let’s answer these questions one at a
time.

NUMBER OF
SUCCESSES ON n
TRIALS
The number of successes in a Bernoulli
process in a fixed number of trials is called
a binomial random variable. Because the
Bi are either 0 or 1, to count how many
are 1 simply add them together!
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D52 For a Bernoulli process B1, B2, . . . with
parameter p, a binomial random variable with
parameters n and p is B1 + · · ·+Bn. Write

B1 + · · ·+Bn ∼ Bin(n, p).

So that is nice as a definition, but how
would one (for example) find the chance
that out of 5 trials, there were 3 successes?

Using S for success and F for failure,
one can write the event

B1 = 1, B2 = 1, B3 = 0, B4 = 1, B5 = 0

much more compactly as

SSFSF

Because the Bi are independent,

P(SSFSF ) = P(S)P(S)P(F )P(S)P(F )

= p3(1− p)2.

Of course, that is not the only way to get
three successes. You could have SSSFF or
FSFSS or others! Recall that the number
of ways to arrange i letters S and n − i
letters F into a length n word is called the
binomial coefficient n choose i, and can be
calculated using(

n

i

)
=

n!

i!(n− i)!
.

The factorial function
Recall that n! (read as n factorial) is the number of
1-1 functions from a domain of size n to a
co-domain of size n. To calculate, n! =

∏n
i=1 i. So

4! = (4)(3)(2)(1) = 24. Also, 0! = 1.

This gives rise to the following
probabilities.

F32 For X ∼ Bin(n, p),

P(X = i) =

(
n

i

)
pi(1− p)n−iI(i ∈ {0, 1, . . . , n}).

SOLVING THE STORY

In the story, there were 10 trips into the
forest, each with a 20% chance of being
successful. Let T ∼ Bin(10, 0.2) be the

number of successful trips. Then the goal
is to find P(T ≤ 3), which can be broken
down as

P(T ≤ 3) =P(T = 0) + P(T = 1) +

P(T = 2) + P(T = 3)

where

P(T = 0) =

(
10

0

)
(0.2)0(0.8)10

P(T = 1) =

(
10

1

)
(0.2)1(0.8)9

P(T = 2) =

(
10

2

)
(0.2)2(0.8)8

P(T = 3) =

(
10

3

)
(0.2)3(0.8)7.

Summing these values gives a total
probability of 87.91% .

NUMBER OF TRIALS
UNTIL THE 1ST
SUCCESS
The number of trials needed until the first
success is called a geometric random
variable.

D53 For B1, B2, . . . iid Bern(p), call

G = inf{i : Bi = 1} ∼ Geo(p)

a geometric random variable with parameter p.

For example, if
B1 = 0, B2 = 1, B3 = 0, B4 = 1, . . ., then
G = inf{2, 4, . . .} = 2.. Actually, even
knowing B3 and B4 were not necessary
here: once you see an i with Bi = 1 and
B1 = 0, . . . , Bi−1 = 0, then G = i is the first
success.

Now consider G ∼ Geo(0.2). Then what
would P(G = 3) be? Well, in order for G to
equal 3, the first two Bernoulli random
variables have to be two, and the third has
to be 1. That is,

(G = 3) = (B1 = 0, B2 = 0, B3 = 1).

Using the independence of the Bi gives

P(G = 3) = P(B1 = 0)P(B2 = 0)P(B3 = 1) = (0.8)(0.8)(0.2).

In general, the following holds.
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D54 For G ∼ Geo(p),

P(G = i) = (1− p)i−1p · I(i ∈ {1, 2, 3, . . .}).

NUMBER OF TRIALS
UNTIL THE rTH
SUCCESS
Now jump to a tougher problem: what is
the distribution of the number of trials
needed to attain the rth success?

For a binomial distribution, the number
of trials is fixed and the number of
successes is random. Here the number of
successes is fixed and the number of trials
is random. So this is called the negative
binomial distribution.

D55 For B1, B2, . . . iid Bern(p), for r a positive
integer,

N = inf{i : B1 + · · ·+Bi = r} ∼ NegBin(r, p),

and say N is a negative binomial random
variable with parameters r and p.

The probabilities for a negative binomial
random variable are calculated similarly to
a binomial.

F33 For N ∼ NegBin(r, p),

P(N = i) =

(
i− 1

r − 1

)
pi(1−p)i−r·I(i ∈ {r, r+1, . . .}).

Proof. In order for N = i, it must be that
Bi = 1 and B1+ · · ·+Bi−1 = r−1. Since these
are independent, multiply the probabilities
to get that P(Bi = 1)P(B1 + · · ·+Bi−1 = r is

p

(
i− 1

r − 1

)
pi−1(1− p)I(r − i ∈ {1, . . . , i− 1}).

This simplifies to give the result.

THE PICTURE
Consider the following picture, where the
points of the Bernoulli process are marked
with a red X.

1 2 3 4 5 6 7 8 · · · n

If this draw of the Bernoulli process was
being used to make Binomial, Geometric,
and Negative Binomial variables, then the
results would be as follows.

A Bernoulli process draw
Distribution In this Bernoulli

Process
Bin(3, p) 1
Bin(4, p) 2
Bin(5, p) 2
Geo(p) 2
NegBin(1, p) 2
NegBin(2, p) 4
NegBin(3, p) 8

111. BASIC BINOMIALS

Suppose that X ∼ Bin(100, 0.05).
a. What is P(X = 0)?
b. What is P(X = 1)?

112. TAILS OF BINOMIALS

Suppose N ∼ Bin(6, 0.3). What is P(N ≥ 4)?

113. BASIC GEOMETRICS

Let G ∼ Geo(0.3). Find P(G ≥ 3).

114. MORE GEOMETRICS

Suppose T ∼ Geo(0.8).
a. What is P(T = 4)?
b. What is P(T ≥ 10)?

115. NEGATIVE BINOMIALS

Suppose that R ∼ NegBin(4, 0.25).
a. Find P(R = 10).

b. Find P(R ≤ 2).

116. MORE NEGATIVE BINOMIALS

Suppose that T ∼ NegBin(5, 0.3).
a. Find P(T = 15).

b. Find P(T ≤ 3).

117. THE DRUG TRIAL

A drug trial independently brings in 18
patients. Each patient is given a drug
expected to lower blood pressure. If the
probability the drug works for any given
person is 20%, what is the chance that the
drug works for at most 5 patients?
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118. WAITING FOR SUCCESS

With the same drug trial where the chance
the drug is effective is 20%, the company
decides to alter the experimental protocol
as follows. It will keep giving the drug to
patients one after another until there are
at least 5 successes. What is the chance
that they need to see at least 20 patients
to make this happen?

119. THE BAD BATCH

A company makes about 5,000 of a
particular part a year. If there is a 0.001
chance (independently) that each part is a
failure, find the probability that there are
no failures among the parts.

120. CONDITIONED ON FAILURE

Continuing the last problem, suppose that
there is at least one failure among the set
of 5,000 parts. What is the chance that
there are at least two failures given this
information?

121. FLY AWAY

A plane scout looking for forest fires during
July in Montana has a 3% chance
(independently) of noticing a fire each time
a flight is taken. What is the chance that
more than 30 flights are needed before the
first fire is seen?

122. LOOKING FOR MEDICINE

Plants in the Amazon rain forest are being
tested for helpful pharmaceutical
properties. If any given plant has a 0.0002
chance of showing such properties, what is
the chance that looking at 40000 plants
finds at least one plant with such
properties.
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CHAPTER 11: POISSON POINT
PROCESSES

T
HE TAVERN OWNER MODELED

the intervals between customer
arrivals as independent random
variables with an Exp(6/hr)

distribution. What was the chance of
getting at least two customers in the first
half hour?

CREATING A BPP
USING GEOMETRICS
Consider a Bernoulli process, B1, B2, . . . iid
Bern(p), and a Bernoulli point process

B = {i : Bi = 1}.

Suppose the elements of B are written in
order, so

B = {T1, T2, . . .}

where T1 < T2 < T3 < · · · . In that format,
the time until the first i with Bi = 1 is
geometrically distributed. So T1 ∼ Geo(p).
Then the time until the next i with Bi = 1
is also geometrically distributed, so
T2 − T1 ∼ Geo(p).

This idea gives another way to create a
Bernoulli point process. Instead of using
Bernoulli random variables, use geometric
random variables.

F34 Let G1, G2, . . . be iid Geo(p). Then

{G1, G1 +G2, G1 +G2 +G3, . . .}

forms a Bernoulli point process of rate p.

E29 Suppose G1 = 3, G2 = 1, and G3 = 4. Then
the first three points in the Bernoulli point process
are 3, 4 = 3 + 1, and 8 = 4 + 3 + 1. That is, the
point process is

P = {3, 4, 8, . . .},

and the underlying Bernoulli process B1, B2, . . .

equals 0, 0, 1, 1, 0, 0, 0, 1, . . ..

EXPONENTIAL RANDOM
VARIABLES
So geometric random variables can be
used to create a point process on {1, 2, . . .}.
What if the goal is to create a point process
on [0,∞)? Then a continuous analogue of
geometric random variables is needed.

Recall that G ∼ Geo(p) means that for all
i ∈ {1, 2, . . .}:

P(G = i) = p(1− p)i−1.

Let ⌈x⌉ denote the ceiling of x, which is
the function that rounds x up to next
integer. For example, ⌈4.3⌉ = 5, ⌈3⌉ = 3,
⌈−2.3⌉ = −2. In order for the ceiling of x to
equal an integer i, x must be strictly
greater than i− 1, and at most i. That is,

(⌈x⌉ = i) = (x ∈ (i− 1, i]).

That fact gives the following.

F35 Suppose U ∼ Unif([0, 1]) and p ∈ (0, 1). Then

G = ⌈ln(U)/ ln(1− p)⌉ ∼ Geo(p).

Proof. Let i ∈ {1, 2, . . .} and α < 0. Then

P(G = i) = P(⌈ln(U)/α⌉ = i)

= P(i− 1 < ln(U)/α ≤ i)

= P((i− 1)α > ln(U) ≥ iα)

The inverse of the natural log function (the
exponential function) is increasing, and so
preserves the order of inequalities.

P(G = i) = P(exp(α(i− 1)) > U ≥ exp(αi))

= P(exp(α(i− 1)) < U ≤ exp(αi))

= exp(α(i− 1))− exp(α(i− 1))

= exp(α(i− 1))[1− exp(α)].

Now setting α = ln(1− p) < 0 gives

P(G = i) = (1− p)i−1[1− (1− p)] = (1− p)i−1p.

CHAPTER 11: POISSON POINT PROCESSES 48



Note that ln(U) = − ln(1/U), and − ln(1/U)
has the distribution called the standard
exponential distribution. Moreover,
− ln(1/U)/λ has an exponential distribution
with rate λ, and write

− ln(1/U)/λ ∼ Exp(λ).

So the exponential distribution is the
continuous analogue of the geometric
distribution, with λ = − ln(1− p).

USING EXPONENTIALS
TO CREATE A POISSON
POINT PROCESS
Now a continuous analogue to the
Bernoulli point process can be built, using
exponentials instead of geometrics.

If iid geometrics G1, G2, G3, . . . with
parameter p are summed to give point
values, the result is a Bernoulli point
process with parameter p.

If iid exponentials A1, A2, . . . with rate λ
are summed to give point values, the
result is a Poisson point process with rate
λ.

D56 Let A1, A2, . . . be iid Exp(λ). Then

P = {A1, A1 +A2, A1 +A2 +A3, . . .}

is a Poisson point process on [0,∞) of rate λ.
Write P ∼ PPP(λ).

THREE QUESTIONS
With the Bernoulli point process of
parameter p, there were three questions to
be answered:

a. What is the time until the first point?

b. What is the time until the rth point for
some positive integer r?

c. What is the number of points that fall
into {1, 2, . . . , n}?

The answers (found in the last chapter)
are as follows.

F36 Let B = {T1, T2, . . .} (with T1 < T2 < · · ·)
be a Bernoulli point process with parameter p over
{1, 2, . . .}. Then

T1 ∼ Geo(p)

Tr ∼ NegBin(r, p)

#(B ∩ {1, 2, . . . , n}) ∼ Bin(n, p).

The same three questions can be asked
for the Poisson point process, with a slight
modification of the last question to deal
with continuous state spaces.

a. What is the time until the first point?

b. What is the time until the rth point for
some positive integer r?

c. What is the number of points that fall
into [0, t]?

EXPONENTIAL

The answer to the first question is that

T1 ∼ Exp(λ),

because that is exactly how the Poisson
point process over [0,∞) is defined.

GAMMA

For the second question, recall that an
independent exponential is added to T1 to
get T2, then another independent
exponential is added to T2 to get T3, and so
on. Hence the value of the rth point will be
the sum of r iid exponential random
variables of rate λ. The distribution of this
sum of exponentials is given the name
Gamma.

D57 Suppose r ∈ {1, 2, . . .} and A1, . . . , Ar are iid
Exp(λ). Then Tr = A1+A2+· · ·+Ar has a gamma
distribution with parameters r and λ, and write

Tr ∼ Gamma(r, p).

Writing out the word Gamma
It is customary to write out the word "Gamma" in
English when referring to this distribution rather
than using the Greek letter. Also, an alternate
name for this distribution is Erlang, but that is
mostly used in Operations Research.
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POISSON

Finally consider the number of points that
fall into the interval [0, t]. This will be a
random variable that comes from the
Poisson family of distributions.

D58 Say that a random variable X has the
Poisson distribution with parameter µ if

P(X = i) = exp(−µ)
µi

i!
· I(i ∈ {0, 1, 2, . . .})

Taylor series of the exponential function
Those familiar with the Taylor series expansion of
exp(x) = 1+x+x2/2!+x3/3!+· · · might note that
the probability X = i is the ith (starting with zero)
term in the expansion of exp(µ). So by multiplying
all terms by exp(−µ) the probabilities will add up
to 1.

The number of points that fall into an
interval (a, b) will have a Poisson
distribution, with parameter equal to the
Lebesgue measure of that interval times
the rate of the Poisson point process.

These results can be summarized in the
following fact.

F37 Let P = {T1, T2, . . .} (with T1 < T2 < · · ·) be
a Poisson point process of rate λ over [0, λ). Then

T1 ∼ Exp(λ)

Tr ∼ Gamma(r, λ)

#(P ∩ [a, b]) ∼ Pois((b− a) · λ).

At this point the tools available are not
enough to prove this fact so it will be saved
for later.

Unlike the binomial distribution, a
Poisson distribution only has one
parameter. So the single parameter for the
Poisson is the Lebesgue measure of the
interval times the rate of the process to
give Pois(Leb([a, b])λ), whereas for the
Bernoulli point process the parameters are
separate: Bin(#({1, . . . , n}), p).

E30 Suppose P ∼ PPP(2.1). What is P(#(P ∩
[2, 3]) = 1)?
Answer. Let X = #(P ∩ [2, 3]) be the number of
points of the Poisson process that fall into the

interval [2, 3]. Then from the last fact it holds that
X ∼ Pois(2.1 · (3− 2)), so

P(X = 2) = exp(−2.1)
2.12

2!
,

which is about 0.2700 .

Another useful fact is that the number of
points in [a, b] and [c, d] are independent for
all a < b ≤ c < d.

F38 Let P ∼ PPP(λ). For a < b ≤ c < d, let

N[a,b] = #(P ∩ [a, b])

N[c,d] = #(P ∩ [c, d])

Then N[a,b] and N[c,d] are independent random
variables.

Overlap at one point
Note that there can be overlap between the
intervals [a, b] and [c, d] of one point. That is
because the chance that a particular point will be
in the Poisson point process is 0.

123. TAILS OF EXPONENTIALS

If A is a standard exponential, what is
P(A ≥ 1)?

124. CONDITIONAL
EXPONENTIALS

If A is a standard exponential, what is

P(A ≥ 1 | A ≥ 0.5)?

125. BERNOULLIS FROM
GEOMETRICS

If G1 = 2, G2 = 2, and G3 = 5 are used to
create a Bernoulli point process, what are
the values of B1, . . . , B7?

126. MORE BERNOULLIS FROM
GEOMETRICS

Suppose G1 = 3, G2 = 2, and G3 = 1 are
used to create a Bernoulli point process.
Then what is (B1, B2, B3, B4, B5) for the
underlying Bernoulli process?
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127. UNDERSTANDING POISSON
POINT PROCESSES

Let P = {T1, T2, . . .} where T1 < T2 < · · · be a
Poisson point process of rate 1.2.

a. What is the distribution of T1?

b. What is the distribution of T2?

c. What is the probability that there are
exactly two points in [0, 1]?

128. FEATURES OF PPP

Let P = {T1, T2, . . .} where T1 < T2 < · · · be a
Poisson point process of rate 0.7.

a. What is the distribution of T1?

b. What is the distribution of T5?

c. What is the probability that there are
exactly two points in [0, 2]?

129. CONDITIONAL PPP

Let P ∼ PPP(1.4). What is the probability
that there are two points in [0, 2], given
that there are four points in [0, 4]?

130. MORE CONDITIONAL PPP

For a Poisson point process of rate 4.5,
what is the probability there is at least one
point in [0, 1] given that there are five
points in [0, 10]?

131. THE RESTAURANT

A restaurant models arriving customers as
a Poisson point process of rate 70 per
hour.

What is the chance that there is at least
one customer arrival in the first minute?

132. ON THE FACTORY FLOOR

A factory models the times of floor
stoppages as a Poisson point process with
rate 0.01 per day.

What is the chance that no stoppages
occur in the first year (365 days)?

Le Poisson

Le Poisson
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CHAPTER 12: DENSITIES FOR
CONTINUOUS RANDOM
VARIABLES

T
HE SPRING RAIN WAS FALLING

heavily in the lake above the dam
next to the village. Everyone knew
that the dam would eventually fail,

but when? The Wizard began to form a
model: if T was the time until the dam
failed, then the probability that T was in a
short interval near t days was about
exp(−t)I(t ≥ 0) times the length of the
interval. For example, the chance that
T ∈ [1.3, 1.31] was approximately
exp(−1.3)(1.31− 1.3). Given this model, what
was the chance that the dam would fail
during the second day from now? That is,
what was P(T ∈ [1, 2])?

DIFFERENTIALS
The chance that a continuous random
variable exactly equals a particular value is
0. So how can probabilities be calculated?
One way is to use the notion of a
differential, which intuitively means an
infitestimally small change in a variable.
For variable x, dx is a differential change in
x. For variable t, dt is how the differential
is expressed.

A differential can also represent an
infitestimally small interval. For instance,
use the notation

X ∈ dx,

to mean that X is in an interval of length
dx that contains the variable value x. That
is, (roughly speaking),

(X ∈ dx) = (X ∈ [x, x+ dx]).

So depending on context, dx is either the
width of a short interval, or the short
interval itself. Which one, just depends on
how it is being used.

In the Story for today, the Wizard’s
model is

P(T ∈ dt) = exp(−t) dt.

On the left hand side of the equation, the
dx is representing an interval, while on the
right hand side it is representing the width
of that interval.

Now the Wizard really wants to know the
probability that T ∈ [1, 2], not a short
interval at all! To get this probability, think
about breaking the interval from 1 up to 2
into disjoint little short intervals. Find the
probability that T is in each of the short
intervals, and add back up to get the
probability that T is in the large interval.

The sum of a bunch of infitestimal
intervals is called an integral, and the sign
of an integral is a stretched out letter S for
that reason. Overall, this can be written as
follows:

P(T ∈ [1, 2]) =

∫
t∈[1,2]

P(T ∈ dt).

This is a special case of a far-reaching
definition.

D59 For a random variable X and measurable set
A,

P(X ∈ A) =

∫
a∈A

P(T ∈ da).

When the set A is a closed interval [a, b],
then an alternate notation puts the a as a
subscript of the integral sign, and b as the
superscript.

Integral limit shorthand for intervals
The following holds∫

x∈[a,b]

=

∫ b

a

for any a ≤ b.

Returning to the story for a moment, the
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model gives

P(T ∈ [1, 2]) =

∫ 2

1
P(T ∈ dt)

=

∫ 2

1
exp(−t)I(t ≥ 0) dt.

Note that the integral is over t ∈ [1, 2]. For
each such t value in [1, 2], I(t ≥ 0) = 1. So it
can be removed in this integral.

P(T ∈ [1, 2]) =

∫ 2

1
P(T ∈ dt) =

∫ 2

1
exp(−t) dt.

More generally, the following rule holds.

F39 ∫
x∈A

f(x)I(x ∈ B) dx =

∫
x∈AB

f(x) dx.

In this way, an indicator function in the
integrand can be moved into the limits of
the integral by finding the intersection
with the existing limits.

The thing on the right hand side is called
a Lebesgue integral. This is a
generalization of the Riemann integrals
that are studied in a typical Calculus class.
The good news is that if a Riemann
integral can be solved to get a number,
then the Lebesgue integral has exactly the
same value! In this case,

∫ 2

1
exp(−t) dt = − exp(−t)|21

= exp(−1)− exp(−2),

which is about 0.2325 .
In the problem above, the indicator

function did not do much. But for other
problems it might have an effect.

E31 Suppose P(X ∈ dx) = (1/2)I(x ∈ [0, 2]).
What is P(X ≥ 1.2)?
Answer. The indicator function is 0 whenever x is
smaller than 0 or greater than 2. This allows us to

adjust the limits of our integration.

P(X ≥ 1.2) =

∫
x∈[1.2,∞)

(1/2)I(x ∈ [0, 2]) dx

=

∫
x∈[1.2,∞)∩[0,2]

1/2 dx

=

∫
x∈[1.2,2]

1/2 dx

= (1/2)(2− 1.2),

which is 40% .

DENSITIES
Suppose P(X ∈ da) = f(a) da. Then call f(a)
the density of the random variable.

D60 If
P(X ∈ da)

da
= f(a),

say that the random variable X has density f(a).
This is also known as the probability density
function, pdf, or Radon-Nikodym derivative. If X
is a continuous random variable, say that the
density is with respect to Lebesgue measure.

Often, a subscript indicates which
random variable the density is for. For
instance, write fX for the density of X, and
fY for the density of Y . The name of the
function for the density using comes from
near the beginning of the alphabet, so fX ,
gX , and hX are all common choices. An
alternative notation for the pdf of a
random variable X is pdfX .

Recall that P(X ∈ (−∞,∞)) = 1 always. It
is possible to check that this holds for the
two densities that have been seen so far.

I =

∫
x∈(−∞,∞)

exp(−t)I(t ≥ 0) dt

=

∫
x≥0

exp(−t) dt

= − exp(t)|∞0
= exp(0)− lim

a→∞
exp(−a)

= 1.
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For fY (s) = (1/2)I(s ∈ [0, 2]),∫
x∈(−∞,∞)

(1/2)I(t ∈ [0, 2]) dt =

∫ 2

0
1/2 dt

= (1/2)(2− 0)

= 1.

Sometimes a nonnegative function has
integral over (−∞,∞) that is finite, but the
integral is not 1. Such a function is called
an unnormalized density.

D61 Say that g ≥ 0 is an unnormalized density if

0 <

∫
x∈R

g(x) dx < ∞.

Call
[∫

s∈R g(s) ds
]−1 the normalizing constant

and
f(x) =

g(x)∫
s
g(s) ds

the normalized density.

E32 What is the normalizing constant for
exp(−3t)I(t ≥ 0)?
Solution. To find the normalizing constant, solve the
integral!

C−1 =

∫
x∈(−∞,∞)

exp(−3t)I(t ≥ 0) dt

=

∫
x∈[0,∞)

exp(−3t) dt

=
exp(−3t)

−3

∣∣∣∣∞
0

=
1

3
− lim

b→∞

exp(−3b)

−3

=
1

3
.

Therefore, the normalizing constant is 1/[1/3],
which is 3 .

HOW THE CDF AND PDF
RELATE
Often the cdf is known and it would be
nice to find the pdf. Or the pdf is known
and it would be nice to find the cdf.

MOVING FROM THE PDF TO THE
CDF

Recall that for a random variable X,
cdfX(a) = P(X ≤ a). So to move from a pdf

to cdf, just integrate!

F40 For a continuous random variable X with an
integrable pdf,

cdfX(a) =

∫ a

−∞
pdfX(r) dr.

E33 Suppose Y has pdfY (s) = 3 exp(−3s)I(s ≥
0) ds. Find the cdf of Y .
Answer. For a < 0, the answer I− is

I− =

∫
s∈(−∞,a]

3 exp(−3s)I(s ≥ 0) ds

=

∫
s∈(−∞,a]∩[0,∞))

3 exp(−3s) ds

=

∫
s∈∅

3 exp(−3s) ds = 0.

For a ≥ 0, the answer I+ is

I+ =

∫
s∈(−∞,a]

3 exp(−3s)I(s ≥ 0) ds

=

∫
s∈(−∞,a]∩[0,∞))

3 exp(−3s) ds

=

∫
s∈[0,a]

3 exp(−3s) ds

= − exp(−3s)|a0 = 1− exp(−3a).

Hence the solution is

(1− exp(−3a))I(a ≥ 0).

MOVING FROM THE CDF TO THE
PDF

Given a cdf, what is P(X ∈ (a, a+ da])? Well,
(−∞, a]) and (a, a+ da] are disjoint intervals
whose union is (−∞, a+ dt]). Therefore,

cdfX(a) + P(X ∈ da) = cdfX(a+ da),

or rearranging

P(X ∈ da) = cdfX(a+ da)− cdfX(a).

Dividing both sides by da gives

pdfX(a) =
P(X ∈ da)

da

=
cdfX(a+ da)− cdfX(a)

da
.

The right hand side should look familiar,
this is the derivative of the cdf of X. This
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motivates (because it is not a formal proof
of) the following fact.

F41 If X has a differentiable cdf, then

pdfX(a) = [cdfX(a)]′,

at all but a countable number of values of a.

The key to differentiating an expression
with indicator functions is that when the
indicator function is 0, the derivative is 0.
When the indicator function is 1, the
derivative is the derivative of whatever
function multiplies the indicator function.
In other words, indicator functions can be
brought out of the derivative operator.

F42 If f(x) is a differentiable function, then

[f(x)I(x ∈ A)]′ = I(x ∈ A)f ′(x).

E34 Suppose that Y has cdf

cdfY (a) = aI(a ∈ [0, 1]) + I(a > 1).

Find pdfY .
Answer. This cdf is differentiable everywhere
except at a = 0 and a = 1. The graph looks like
this:

1

0 1

Differentiating using the rule for indicator
functions gives:

pdfY (a) = [cdfY (a)]
′

= [aI(a ∈ [0, 1]) + 1 · I(a > 1)]′

= [a]′I(a ∈ [0, 1]) + [1]′I(a > 1)

= (1)I(a ∈ [0, 1]) + (0)I(a > 1).

Hence

I(a ∈ [0, 1])

is the pdf of Y .

133. DENSITY OF A UNIFORM

Suppose P(Y ∈ dy) = (1/30)I(y ∈ [0, 30]) dy.
What is P(Y ≤ 5)?

134. GAMMA DENSITY

Suppose P(Y ∈ dy) = 4y exp(−2y)I(y ≥ 0) dy.
What is P(Y ≥ 1)?

135. MORE UNIFORM DENSITY

Say that
P(W ∈ dw) = (1/20)I(w ∈ [30, 50]) dw. What
is the density of W?

136. EXPONENTIAL DENSITY

Say that P(T ∈ dt) = exp(−t)I(t ≥ 0) dt.
What is the density of T?

137. ANOTHER EXPONENTIAL
DENSITY

Suppose P(R ∈ dr) = 3 exp(−3r)I(r ≥ 0) dr.
Find cdfR(a).

138. CDF OF A GAMMA

Let pdfY (y) = 4y exp(−2y)I(y ≥ 0). Find
cdfY (a).

139. NORMALIZING AN
EXPONENTIAL

Suppose
P(R ∈ dr) = C exp(−3r)I(r ∈ [0, 2]) dr. Find
C.

140. NORMALIZING A BETA
DENSITY

Suppose P(A ∈ da) = Ca2I(a ∈ [0, 1]) da.
Find C.

141. DENSITY OF A FUNCTION OF
A UNIFORM

Suppose U ∼ Unif([0, 1]), and W =
√
U .

a. Find cdfW .
b. Find pdfW .

142. SHIFTING AND SCALING A
UNIFORM

Suppose U ∼ Unif([0, 1]), and S = 3U + 4.
a. Find cdfS.
b. Find pdfS.

143. FROM CDF TO PDF

Suppose cdfX(x) = (1 − 1/x)I(x ≥ 1). Find
pdfX(x).

CHAPTER 12: DENSITIES FOR CONTINUOUS RANDOM VARIABLES55



144. DOUBLE EXPONENTIAL

Suppose X has cdf

cdfX(x) = (1/2)eaI(a < 0)+(1−(1/2)e−a)I(a ≥ 0).

Find pdfX(x).
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CHAPTER 13: DENSITIES FOR DISCRETE
RANDOM VARIABLES

A
S THE ARMY APPROACHED THE

gates, the King turned to
his Scouts and asked: “How large
is the approaching menance?” The

Scouts huddled together, and reported:
“We are not sure your majesty. However,
we can say that the probability they
number n thousand troops is
3n exp(−3)/n!.”

The King sighed, wondering why he had
hired scouts so invested in probabilistic
modeling. "Just tell me", he pleaded, "can
you give me the number that is most
likely?"

DENSITIES AGAINST
COUNTING MEASURE
Densities for continuous random variables
are with respect to Lebesgue measure,
which is why to find P(X ∈ A) when X is
continuous, a Lebesgue integral is used.

Discrete random variables also have
densities, but they are with respect to
counting measure rather than Lebesgue
measure.

For counting measure, think about what
a little differential element
[x − dx/2, x + dx/2] means. Consider y. The
only way for y to fall in the interval
[x− dx/2, x+ dx/2] is if y = x, in which case
a count of 1 is registered. Otherwise, if
y ̸= x, a count of 0 is registered.

The result is that

P(X ∈ da) = P(X = a)

when working with discrete random
variables.

Now consider how integration is
performed against counting measure. For
instance, consider∫ 5

1
x2I(x ∈ {1, 2, 3, 4, 5} d#.

There are only five values of x where the
differential is positive, x = 1, . . . , x = 5.

The first value x = 1, has d# = 1 so the
integral gets a contribution of 12 = 1. The
second value x = 2, also has d# = 1 again
so the integral gets a contribution of 22 = 4.
Working towards 5 gives

S =

∫ 5

1
x2I(x ∈ {1, 2, 3, 4, 5}) d#

=
5∑

i=1

i2

= 12 + 22 + 32 + 42 + 52 = 55.

In general, integrals with respect to
counting measure are a sum.

F43 Let # denote counting measure. Then for a
countable set A,∫

a∈A

f(a) d# =
∑
a∈A

f(a).

E35 Let X ∼ d6 be the roll of a fair six-sided die.
Then the density of X with respect to counting
measure is

pdfX(i) = (1/6)I(i ∈ {1, 2, 3, 4, 5, 6}).

What is P(X ≤ 2)?
Answer. Note P(X ≤ 2) = P(X ∈ {1, 2}), which is

P(X ∈ {1, 2}) =
∫
i∈{1,2}

pdfX(i) d#

=

2∑
i=1

1

6
I(i ∈ {1, . . . , 6})

=
1

6
+

1

6
=

1

3
,

which is about 0.3333 .
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The probability mass function
An old term for the density of a discrete random
variable is probability mass function which is
unfortunately a terrible name that makes
absolutely no sense because mass can either be
concentrated in chunks or spread out continuously
like peanut butter. Still, the term is used now and
then, so be aware that the density of discrete
random variables is sometimes called the pmf
instead of the pdf.

D62 For a discrete random variable X , the
density (aka pdf aka probability mass function
aka pmf) is

pdfX(i) = P(X = i).

DISCRETE CDF
FUNCTIONS
Turning a pdf into a cdf is the same for the
discrete world as the continuous. The only
thing to note is that the integral becomes a
sum.

P(X ≤ a) =

∫ a

−∞
pdfX(s) d# =

∑
i≤a

pdfX(i).

The fact that the cdf is a sum leads to
the cdf having jumps. That is, the cdf is
continuous for continuous random
variables, and has jumps when the
random variable is discrete.

E36 Draw the cdf of X when P(X = 1) = 0.2,
P(X = 3) = 0.5, P(X = 5) = 0.3.
Answer. The cdf of X will have a jump of size 0.2

at x = 1, a jump of size 0.5 at x = 3, and a final
jump of size 0.3 at x = 5.

1 3 5

0.2

0.7
1

MEASURES OF
CENTRAL TENDANCY
For a random variable with density f ,
where is the center of the distribution?
There is more than one way to measure
that.

THE MODE

D63 Say that a random variable X with density
fX has mode m if

m ∈ argmax fX(x).

The set of all modes of X is the mode set of the
random variable.

If X is a discrete random variable, this is
the value x such that P(X = x) ≥ P(X = s)
for all other s. If X is a continuous random
variable, this is any value x such that
P(X ∈ dx) ≥ P(X ∈ ds) for all other s. Note
that the mode might not be unique.

E37 In the Story for today,
pdfN (n) = exp(−3)3n/n!, and the goal is to find
the mode, that is, what value of n makes pdfN (n)

as large as possible?
Answer. To find out, consider the ratio

r =
pdfN (n+ 1)

pdfN (n)
=

exp(−3)3n+1/(n+ 1)!

exp(−3)3n/n!
=

3

n+ 1
.

When r is bigger than 1, then
pdfN (n+ 1) > pdfN (n).

When the ratio is smaller than 1, pdfN (n+ 1) <

pdfN (n). Finally, if r = 1, then pdfN (n + 1) =

pdfN (n).
In the problem r is less than 1 if n+1 < 3 → n <

2, and bigger than 1 if n + 1 > 3 → n > 2. When
n = 2 it holds that r = 1.

Hence n = 2 and n = 3 are both modes of N .

The ratio method works exceedingly well
when there are n! factors in the pdf, as
they mostly cancel out as seen above. For
continuous pdfs, derivatives are usually
the way to go.

E38 Suppose pdfX(s) = s2 exp(−3s)I(s ≥ 0).
What is the mode(s) of X?
Answer. When s ≤ 0, the derivative of the pdf of
X is 0. Now consider [pdfX(s)]′ when s ≥ 0. Then
using the chain rule:

[pdfX(s)]′ = [s2 exp(−3s)]′

= ([s2]′ exp(−3s) + s2[exp(−3s)]′)

= (2s exp(−3s) + s2(−3) exp(−3s))

= exp(−3s)s(2− 3s).
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So the derivative of the density for all s is

[pdfX(s)]′ = exp(−3s)s(2− 3s)I(s ≥ 0).

No matter what s is, exp(−3s) > 0. Also, sI(s ≥
0) ≥ 0 for all s. So when s > 0 and 2 − 3s < 0

the derivative is negative, and when s > 0 and 2 −
3s > 0 the derivative is positive. This switch occurs
at s = 2/3, so this is where the mode occurs, at
approximately 0.6666 .

THE MEDIAN

Another way to look at the center is where
the cdf and one minus the cdf are both at
least 1/2.

D64 Say that m is a median of a random variable
X if both P(X ≤ m) ≥ 1/2 and P(X ≥ m) ≥
1/2. The set of all medians of a random variable X

is the median set.

E39 Suppose A ∼ d5. What is the median set of
A?
Answer. For i ∈ {1, 2, 3, 4, 5}, P(A ≤ i) = i/5. So
any median must have i ≥ 3. Similarly, P(A ≥ i) =

(5− i)/5. So any median must have i ≤ 3. The only
number that fits the bill is 3 .

For discrete random variables, the
median set can contain more than one
value.

E40 For B ∼ d6, what is the median set of B?
Answer. For a ∈ [1, 6], P(B ≤ a) = ⌊a⌋/6. So any
median must have i ≥ 3. Similarly,
P(B ≥ a) = ⌊7 − i⌋/6. So any median must have
i ≤ 4. Therefore, the median set is [3, 4] .

SHIFTING AND SCALING
When a constant is subtracted from a
random variable, that is called shifting the
random variable. Multiplying a random
variable by a constant is called scaling the
random variable. How that affects the
density depends on whether it is applied to
a continuous random variable or a discrete
random variable.

F44 Let a ̸= 0, b ∈ R, X be a random variable
with pdf fX , and Y = aX + b. If X is a continuous
random variable, then

fY (s) =
1

|a|
fX((s− b)/a).

If X is a discrete random variable, then

fY (s) = fX((s− b)/|a|).

Why the difference between continuous
and discrete? Because in the continuous
world, for y = ax+ b, dy = a dx, while for the
discrete world dy and dx are equal. Or you
can think about the proof.

Proof. Let X be continuous. Let a > 0, then
by the chain rule

fY (s) = [P(aX + b ≤ s)]′

= [P(X ≤ (s− b)/a)]′

= fX((s− b)/a)[(s− b)/a]′

= fX((s− b)/a)(1/a).

When a < 0,

fY (s) = [P(aX + b ≤ s)]′

= [P(X ≥ (s− b)/a)]′

= [1− P(X < (s− b)/a)]′

= −fX((s− b)/a)[(s− b)/a]′

= fX((s− b)/a)(1/(−a)).

So in both cases

fY (s) = fX((s− b)/a)/|a|.

For discrete random variables

fY (i) = P(Y = i)

= P(aX + b = i)

= P(X = (i− b)/a)

= fX((i− b)/a).

E41 Suppose T ∼ Exp(1), what is the density of
3T + 4?
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Answer. The density of T is fT (s) = exp(−s)I(s ≥
0). Plugging in s = (t− 4)/3 gives

f3T+4(t) = (1/|(|3))fT ((t− 4)/3)

= (1/3) exp(−(t− 4)/3)I((t− 4)/3 ≥ 0),

which simplifies to

exp(4/3)

3
exp(−t/3)I(t ≥ 4).

E42 Suppose X ∼ d3. What is the density of
−2X?
Answer. Since X is a discrete random variable,

f−2X(i) = fX(i/(−2))

=
I(i/(−2) ∈ {1, 2, 3})

3
,

and solving for i in the indicator function gives

f−2X(i) =
I(i ∈ {−2,−4,−6})

3
.

THE SURVIVAL
FUNCTION
If an item lasts T time before breaking,
then if T > t the item has survived past
time t. This motivates the definition of the
survival function.

D65 The survival function of a random variable
X is

surX(t) = 1− cdfX(t) = P(X > t).

145. PDF FOR A DIE

If Y ∼ d10, what is pdfY (i)?

146. CDF FOR A DIE

For X ∼ d6, draw cdfX(a).

147. BINOMIAL MODE

Suppose pdfB(i) =
(
10
i

)
pi(1− p)10−i.

a. What is P(B = 6)?
b. What is the mode if p = 0.42?

148. GAMMA MODE

Suppose pdfG(r) = (1/6)r3 exp(−r)I(r ≥ 0).
Find the mode of G.

149. GAMMA MEDIAN

Suppose pdfG(r) = (1/6)r3 exp(−r)I(r ≥ 0).
Find the median of G.

150. MEDIAN SETS OF A DIE

For X ∼ d10, find the median set of X.

151. CDF OF A SCALED DIE

For X ∼ d6, what is the cdf of 2X?

152. PDF OF A SCALED DIE

For X ∼ d6, what is the pdf of 2X?

153. SCALING A BETA

For T with pdfT (t) = 12t2(1 − t)I(t ∈ [0, 1]),
what is the pdf of 2T?

154. SCALED AND SHIFTED
GAMMA

For G with pdf (1/6)r3 exp(−r)I(r ≥ 0), what
is the pdf of 3G+ 1?

155. SURVIVAL FUNCTION OF AN
EXPONENTIAL

For T ∼ 4 exp(−4t)I(t ≥ 0), what is the
survival function of T?

156. SURVIVAL FUNCTION OF A
DIE

For X ∼ d6, what is the survival function of
X?
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CHAPTER 14: MEAN OF A RANDOM
VARIABLE

T
HE ELDER KNEW THAT THE taxes
collected from the members of the
village varied widely. About 10%
of the villages could contribute 5

florins a year, while 40% could contribute
2 florins, and the remaining 50% only 1.
What, the Elder wondered, was the average
amount of taxes that a villager paid?

THE SAMPLE AVERAGE
Consider a random variable X that takes
on different values. The variable X could
be like the taxes paid by villagers in the
story, where

P(X = 5) = 0.1

P(X = 2) = 0.4

P(X = 1) = 0.5.

Suppose that there were a 1000 villagers,
paying taxes X1, . . . , X1000. The sample
average of the taxes paid by the villagers
would be

X1 +X2 + · · ·+X1000

1000
.

Because of the probabilities assigned to
each value of X, it is not unreasonable to
believe that there would be about 100 that
paid 5, 400 that paid 2, and 500 that paid
1. Of course, because the random variable
are random, those would not be exactly
the values, but close.

If these were the exact numbers, say
that x1 = x2 = . . . = x100 = 5,
x101 = . . . = x500 = 2, and
x501 = . . . = x1000 = 1. Then the sample
average of x would be:

5 + · · ·+ 5 + 2 + · · ·+ 2 + 1 + · · ·+ 1

1000
,

which makes
(5)(100) + (2)(400) + (1)(500)

1000
,

and dividing the 1000 through the
numerator gives

5(0.1) + 2(0.4) + 1(0.5).

Define this number to be the expected
value or mean of the random variable. Like
the median, the mean is another example
of a measure of central tendency, and only
depends on the distribution of the random
variable.

D66 Suppose P(X ∈ {x1, . . . , xn}) = 1. Then the
expected value, also known as the expectation,
average, or mean of the random variable, is

n∑
i=1

xiP(X = xi).

This is called a weighted average. The
values that X can take on, x1, . . . , xn are
assigned weights equal to P(X = xi), and
then summed.

When U ∼ Unif({u1, . . . , un}), then

E[U ] =
n∑

i=1

1

n
ui

is just the sample average of the ui.
Indicator functions have especially nice

means that connect averages with
probabilities.

F45 For s an event,

E[I(s)] = P(s).

Proof. Since I(s) is either 0 or 1,

E[I(s)] = (0)P(I(s) = 0) + (1)P(I(s) = 1) = P(s).

So really, all of probability can be
considered a special case of expected
value!

MOVING TO THE INFINITE

The definition given works for when X only
takes on a finite number of values, but
what about distributions like the
geometric, where the values could be

CHAPTER 14: MEAN OF A RANDOM VARIABLE61



{1, 2, . . .}? Then an infinite sum is needed.
Unfortunately, not all infinite sums
converge. For those that do, the random
variable is called integrable.

D67 Let X be a random variable with
P(X ∈ {x1, x2, . . .}) = 1. Then consider the
infinite sum

∞∑
i=1

xiP(X = xi).

If this sum converges, call the result the expected
value of X , and say that X is integrable.

Note that if W ≥ 0 with probability 1,
then

∑∞
i=1wiP(W = wi) will always be either

a real number or ∞. This leads to the
following fact.

F46 A random variable W is integrable if and only
if E[|W |] < ∞.

Of course, if a random variable X only
takes on a finite number of values, it is
always integrable.

F47 If P(X ∈ {x1, . . . , xn}) = 1, then X is
integrable.

THE STRONG LAW OF
LARGE NUMBERS
The expected value is defined as given for
a discrete random variable that only takes
on a finite number of values, but how does
that relate to the sample average from the
story?

For instance, if X1, . . . , X1000 are iid
draws with the same distribution as X,
and X has mean E[X], how does the
sample average

X1 + · · ·X1000

1000

and E[X] compare? Will they be close
together?

It turns out the answer to that question
is yes, and is the subject of one of the most
important theorems in probability, the
Strong Law of Large Numbers.

T4 The Strong Law of Large Numbers. Given a
sequence of random variables X1, X2, . . . that are
iid with distribution identical to X where E[X] < ∞.
Then

P
(

lim
n→∞

X1 +X2 + · · ·+Xn

n
= E[X]

)
= 1.

There is a lot to unpack there! Here are
some of the highlights

• Because X1, X2, . . . are random variables,
so are Sn = (X1 + · · ·+Xn)/n for any n.

• The random variables X1, X2, . . . are iid,
but the sample averages Sn are not
independent, since Sn+1 depends on the
value of Sn.

• Even though the Sn are not independent,
it is possible to say something about how
they behave. With probability 1, they will
get closer and closer to E[X] if X is an
integrable random variable.

• If E[X] does not exist, it turns out the
limit will never exist with probability 1.
(The limit never existing includes when
the limit is ∞.)

EVENTS OF PROBABILITY 1
The “with probability 1” part in the SLLN
seems a bit weird. Recall that events that
are always true have probability 1.
However, the reverse is not true! When
dealing with an infinite number of possible
outcomes, it is possible to have an event
which is not logically true, but still has
probability 1 of being true.

It helps to look at an example. Suppose
D ∼ Unif({1, 2, 3, 4, 5, 6}). Then

E[D] = (1/6)(1 + · · ·+ 6) = 3.5.

Hence, for D1, D2, D3, . . . iid d6, the sample
average will converge to 3.5.

But what if D1 = D2 = D3 = · · · = 2? Then
every sample average, Sn = (D1 + · · ·+Dn)/n
equals 2 as well. So the limit of the sample
averages is 2, not 3.5!

However, the chance that every single die
roll is 2 is (1/6)(1/6)(1/6) · · · = 0. In other
words, while it is possible for the sample
averages to not converge to the mean, the
chance that it happens will always be 0.
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LINEARITY OF
EXPECTATION
Some operators have the property that
they are linear operators. A linear operator
takes as input a vector and returns either
a vector or a scalar.

What is a vector space?
If you have not worked much before with vectors
or scalars, here is the important part. A vector
space consists of vectors and scalars. Two vectors
can be added together to give another vector. A
vector can also be scaled to give another vector by
multiplying by a scalar. These operations have to
obey certain rules of commutivity, associativity,
and distribution.

D68 Say that L is a linear operator if for all
vectors v and w, and scalars a and b,

L(av + bw) = aL(v) + bL(w).

Examples of linear operators include the
following.
Derivatives. Here differentiable functions
are the vectors and real numbers are the
scalars. For f and g differentiable and a
and b real numbers:

[af + bg]′ = af ′ + bg′.

Integrals. Here integrable functions are the
vectors and again real numbers are the
scalars. For f and g integrable over A, and
a and b real numbers:∫

A
af + bg dA = a

∫
A
f dA+ b

∫
A
g dA.

Limits. Suppose an and bn are sequences
that both have a limit as n approaches ∞.
Then for c1, c2 ∈ R,

lim
n→∞

c1an + c2bn = c1 lim
n→∞

an + c2 lim
n→∞

bn.

But wait a minute! The Strong Law of
Large Numbers says that the limit of the
sample average equals the expectation
with probability 1 when the expected value
exists. So from the linearity of limits, the
linearity of expectation follows.

F48 For integrable random variables as vectors,
and real numbers as scalars, the expected value E
is a linear operator.

Note that there is nothing about whether
or not the random variables are dependent
or independent. Linearity works in both
cases! (Similarly, [f + f ]′ = f ′ + f ′ even
though the sum was of the same function.)

E43 Suppose X has expected value 3 and Y has
expected value −1. What is E[6X + 4Y ]?
Answer. By linearity of expectation, this is 6E[X] +

4E[Y ], which is (3)(6) + (−1)(4), or 14 .

E44 Let U ∼ Unif([0, 1]), X = 2I(U < 0.3) and
Y = 3I(U < 0.6). What is E[X + Y ]?
Answer. Even though X and Y are not
independent,

E[X + Y ] = E[X] + E[Y ]

= 2E[I(U < 0.3)] + 3E[I(U < 0.6)]

= (2)(0.3) + 3(0.6),

which is 2.400 .

SYMMETRY
Some distributions are symmetric. When a
random variable X is symmetric around a
value m, the expected value of X is also m.

To be precise, first define what it means
for a random variable to be symmetric
around m.

D69 A random variable X is symmetric around m

if X−m and −(X−m) have the same distribution.

E45 For X ∼ Unif({1, 2, 3, 4}), prove that X is
symmetric around 2.5.
Answer. Here X − m is uniform over
{−1.5,−0.5, 0.5, 1.5}, while −(X − m) is uniform
over {1.5, 0.5,−0.5,−1.5}, which is the same set!

In general, uniforms have the following
symmetry.

F49 If X ∼ Unif({a, a + 1, . . . , b}), then X is
symmetric around (a+ b)/2.
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F50 If X is an integrable random variable
symmetric around m, then E[X] = m.

Proof. Note E[X −m] = E[−(X −m)]. So

0 = E[X−m−[−(X−m)]] = E[2X−2m] = 2(E(X)−m).

Solving for E[X] completes the proof.

Symmetric random variables with
densities have symmetric densities.

F51 Let X be a random variable with density
fX(x) symmetric around m. Then

fX(x−m) = fX(m− x).

Proof. The density of X−m is fX(x−m) and
the density of −(X −m) = m −X is fX(m −
x).

WRITING SUMS AS
INTEGRALS
Note that when E[X] exists, the random
variable is called integrable, and not
summable. This is because the sum can be
written as an integral with respect to
counting measure. Recall that∑

w

wP(W = w) =

∫
w
wfW (w) d#,

where # is counting measure. This integral
formulation will be helpful when extending
the idea of expectation to continuous
random variables.

157. MEAN OF FINITE RANDOM
VARIABLES

If P(W = 1) = P(W = 2) = 0.13, and P(W =
4) = 0.74, what is E[W ]?

158. ANOTHER MEAN OF A FINITE
RANDOM VARIABLE

If P(R = −3) = 0.25, P(R = 0) = 0.4, and
P(R = 1) = 0.35, what is E[R]?

159. MEAN OF A DISCRETE
UNIFORM

Suppose U ∼ Unif({0, 10, 100}). What is
E[U ]?

160. ANOTHER MEAN OF A
DISCRETE UNIFORM

Suppose A is uniform over {−1, 0, 1, 5}.
What is E[A]?

161. MEAN OF A DIE ROLL

Suppose X ∼ d8. What is E[I(X ≤ 3)]?

162. MEAN OF A SUM

Suppose U ∼ Unif([0, 1]), X = I(U ∈ [0.2, 0.3])
and Y = I(U ∈ [0.25, 0.35]). Find E[X + Y ].

163. MEAN OF A DIFFERENCE

Suppose E[A] = 1.2 and E[B] = 6.3. What is
E[A−B]?

164. MEAN OF A FUNCTION OF A
RANDOM VARIABLE

Let W ∼ Unif({1, 2, 3}).
a. What is the density of T = W 2?
b. What is E[W ]?
c. What is E[T ]?
d. What is E[W + T ]?

165. SYMMETRY OF A DISCRETE
UNIFORM

Suppose W is uniform over {−5, 0, 5}.
a. Show that W is symmetric around 0.
b. What is the expected value of W?

166. A SYMMETRIC FINITE
RANDOM VARIABLE

Suppose P(R = 1) = P(R = 3) = 0.4, while
P(R = 2) = 0.2.
a. Show that R is symmetric around 2.
b. What is the expected value of R?

167. VERTIGON’S ARMY

The Dark Lord Vertigon was believed to
have (with equal probability) a thousand,
six thousand, or eight thousand soldiers in
his army. What was the expected size of
Vertigon’s Army?

168. A PAPER MILL

A local paper mill expects with probability
40% to receive 1100 orders, with
probability 15% to receive 800 orders, and
with probability 45% to receive 600 orders.
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On average, how many orders do they
expect to receive?

169. FOUR STORES

Pretty Polly’s Pet Store has four locations.
The first averages 200 customers a day,
the second averages 232, the third 330,
and the last 280. Altogether, what is the
total average number of customers at all of
the four stores per day?

170. STREAMLINING

Currently factory 1 produces an average of
10000 units per day, while factory 2
produces an average of 12000 units per
day. A consultant believes that factory 1
can be improved by 20%, and factory 2
can be imporved by 10%. If both
statements are true, what would the
average total output per day be?

171. THE SLLN IN ACTION

Suppose that W has mean 2 and
W1,W2, . . . are iid W . What can be said
about

lim
n→∞

W1 + · · ·+Wn

n
?

172. TO INFINITY!
Suppose X has mean 4.2 and X1, X2, . . .
are iid X. What can you say about

lim
n→∞

X1 + · · ·+Xn

n
?
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CHAPTER 15: MEAN OF A GENERAL
RANDOM VARIABLE

T
HE WIZARD THREW YET another
fireball at the approaching
monsters, then glanced
backwards. Where were the

reinforcements so desperately needed? The
Wizard has modeled the time until the
reinforcements came as exponentially
distributed with rate parameter 0.3 per
minute. With that model, what was the
expected number of minutes until they
arrived?

EXPECTATIONS USING
DENSITIES
Last time an important fact was stated:
the mean of indicator functions gave the
probability of the event occurring.

So for a random variable X and
measurable set A,

P(X ∈ A) = E[I(X ∈ A)].

Of course, there is another way to find
probabilities, use the density of X.

P(X ∈ A) =

∫
A
fX(x) dµ =

∫
I(x ∈ A)fX(x) dµ.

So that means

E[I(X ∈ A)] =

∫
I(X ∈ A)fX(x) dµ.

Using linearity of expectations, this can
be extended to weighted sums of indicator
functions. So to find

E[3I(X ∈ A) + 2I(X ∈ B)],

use ∫
[3I(X ∈ A) + 2I(X ∈ B)]fX(x) dµ.

So that handles how to find the expected
value of indicator functions, but what if
the function of the random variable that
you are looking for is not a weighted sum
of indicator functions.

That means that if h(x) is any weighted
sum of indicator functions:

h(x) = a1I(x ∈ A1) + · · ·+ anI(x ∈ An),

then
E[h(x)] =

∫
h(x)fX(x) dx.

That tells us how to find the expected
value of a function of a random variable
with a density when the function is the
weighted sum of indicator functions.

Even if the target function is not exactly
a weighted sum of indicator functions, a
weighted sum of indicator functions might
be good enough to approximate the
function.

For instance, consider the following
three interval partition of [0, 1].

I1 = [1/4, 1/2], I2 = (1/2, 3/4], I3 = (3/4, 1]).

Then(
1

4

)2

I(x ∈ I1)+

(
2

4

)2

I(x ∈ I2)+

(
3

4

)2

I(x ∈ I3)

is an approximation to y = x2 over the
interval [0, 1].

1

1

By using more indicator functions, the
approximation gets better and better. This
leads to the following way to calculate
expected value for random variables with
densities.

E[g(X)] =

∫
g(x)fX(x) dµ.

In general, this result is one of the most
important in probability theory.
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T5 Suppose random variable X has density fX
with respect to measure µ. Then for real-valued
function g,

E[g(X)] =

∫
g(x)fX(x) dµ(x),

if the integral exists.

Recall that our two most common
measures are counting measure for
discrete random variables, and Lebesgue
measure for continuous random variables.
For Lebesgue measure

E[g(X)] =

∫
g(x)fX(x) dx,

and for counting measure,

E[g(X)] =

∫
g(x)fX(x) d# =

∑
x

g(x)fX(x).

This is summarized in the following
theorem.

F52 Let X be any continuous random variable
with density fX(x) = P(X ∈ dx)/dx with respect
to Lebesgue measure. Then

E[g(X)] =

∫
g(x)fX(x) dx.

For X a discrete random variable with density
fX(i) = P(X = i) with respect to counting
measure

E[g(X)] =
∑

g(i)fX(i).

This result is sometimes called the Law
of the Unconscious Statistician since every
instance of the random variable X is
replaced by the index variables in the
integral or sum. Some examples!

E46 Set up the integral for E[Exp(T )], where T ∼
Unif([0, 10]).
Answer. T is a continuous variable with density

fT (t) =
1

10
I(t ∈ [0, 10]).

Hence

E[exp(T )] =
∫

exp(t)(1/10)I(t ∈ [0, 10]) dt

which is ∫ 10

0

exp(t)/10 dt.

E47 Set up the integral for E[W 2], where
W ∼ Unif({1, . . . , 5}).
Answer. Note P(W = i) = 1/5 for i ∈ {1, 2, . . . , 5}.
Hence this is

5∑
i=1

i2(1/5).

E48 Set up the integral for E[
√
T ], where

T ∼ Exp(1).
Answer. The density of T is fT (t) = exp(−t)I(t ≥
0), so the integral is

E[
√
T ] =

∫ √
t exp(−t)I(t ≥ 0) dt

=

∫ ∞

0

√
t exp(−t) dt.

SOLVING THE STORY

In the case of the story, the goal was to
find E[T ] where T ∼ exp(0.3 per minute).
The density is

fT (t) = 0.3 exp(−0.3t)I(t ≥ 0),

and g(t) = t, so the expected value is

E[T ] =
∫

t · 0.3 exp(−0.3t)I(t ≥ 0) dt

=

∫ ∞

0
t · 0.3 exp(−0.3t) dt

=

∫ ∞

0
t[− exp(−0.3t)]′ dt

= −t exp(−0.3t)|∞0 −
∫ ∞

0
−[t]′ exp(−0.3t) dt

= −0.3−1 exp(−0.3t)|∞0
= 0.3−1

which is about 3.333 minutes .

SYMMETRY
Earlier it was noted that for integrable
random variables that are symmetric
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about m, the mean must also be m as well.
this works equally well for continuous as
well as discrete random variables.

F53 Suppose X has density fX(x) with respect to
Lebesgue measure, where fX(x−m) = fX(m− x)

for some constant m. Then if X is integrable, then
E[X] = m.

Both discrete uniform random variables
over {a, a + 1, . . . , b − 1, b} and continuous
uniform random variables over [a, b] are
symmetric about (a + b)/2. Moreover, each
has a finite expected value because they
are bounded below by a and above by b.
Together, this gives the following result.

F54 Suppose X ∼ Unif(A), where A = {a, a +

1, . . . , b} or A = [a, b]. Then

E[X] =
a+ b

2
.

MONTE CARLO
METHODS
The term Monte Carlo method (MCM) refers
to any algorithm that draws from random
variables while running.

One type of MCM can use the random
draws to estimate sums or integrals. For
instance, suppose the goal is to estimate
the integral

I =

∫ ∞

0
t3/2 exp(−t) dt.

Note that I = E[T 3/2], where T is an
exponential random variable with mean 1.
So use the Strong Law of Large Numbers!

Draw n iid copies of T where n is a large
number, then take the sample average of
the results. In R, this can be accomplished
with the following code.

n <- 10^6
T <- rexp(n, 1)
print(mean(T^(3/2)))

The result is close to the true answer of
1.32934.

173. MEAN OF AN EXPONENTIAL

For W ∼ Exp(−2), set up the following
integrals.
a. E[W ].
b. E[W 2].
c. E[I(W < 3)]

174. MEAN OF AN EXPONENTIAL

For U ∼ Unif([−5, 5]), set up the following
integrals.
a. E[U ].
b. E[U2].
c. E[I(U < 3)]

175. MEAN OF FUNCTIONS OF A
CONTINUOUS UNIFORM

For a random variable T ∼ Exp(λ), so
fT (t) = λ exp(−λt)I(t ≥ 0), find E[T ].

176. MEAN OF A GENERAL
EXPONENTIAL

Consider a random variable T ∼ Exp(λ)
with density fT (t) = λ exp(−λt)I(t ≥ 0). Find
E[T 2].

177. MONTE CARLO WITH
UNIFORMS

Using the function runif that generates
U ∼ Unif([0, 1]), write R code to estimate∫ 1

0

√
u du

using 106 samples.

178. MONTE CARLO WITH
EXPONENTIALS

Using ‘rexp‘ that generates random
variables with an exponential distribution,
write R code to estimate∫ ∞

0
sin(x) exp(−0.5x) dx.

179. POLYNOMIALS OF
CONTINUOUS UNIFORMS

Let U ∼ Unif([0, 1]). Find E[(1− U)(1 + U)].
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180. POLYNOMIALS OF DISCRETE
UNIFORMS

Let W ∼ Unif({1, 2, 3}). Find E[(1 − W )(1 +
W )].

181. A NONINTEGRABLE DENSITY

Suppose X has density fX(x) = (4/τ)/(1 +
x2). Show that X is not integrable.

182. A NONINTEGRABLE RANDOM
VARIABLE

Show that if U ∼ Unif([0, 1]), that U−1 is not
integrable.

183. DERIVING FORMULAS

Suppose E[X] = µ. Prove that

E[(X − µ)2] = E[X2]− µ2.

184. A CUBIC FORMULA

For a random variable X with X3, X2, and
X integrable random variables, let
µ = E[X]. Then write

E[(X − µ)3]

in terms of E[X3], E[X2], and µ.
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CHAPTER 16: CONDITIONAL EXPECTATION

T
HE FIGHTER QUICKLY SIZED UP

the approaching monsters. Based
on the size of the cave, the Fighter
figured that the monsters were

composed of from 1 to 3 groups, and each
possibility was equally likely. Each group
of monsters was equally likely to contain
from 10 to 20 individuals. Overall, the
Fighter wondered, what is the average
number of monsters that approached?

KNOWING ABOUT A
RANDOM VARIABLE
In order to solve the Fighter’s problem, it is
necessary to understand how conditional
expectation works. Recall that for
conditional probability, the goal was to
find the probability that an event s was
true given that it was known that r was
true.

Expectation can be thought of as an
extension of probability since P(s) = E[I(s)].
So naturally conditional expectation is a
bit more complicated than conditional
probability.

The idea is as follows. Consider random
variables X and Y which are both
integrable. Then knowing nothing about Y ,
X has a particular average. But if the
value of Y is known instead of random, it
might be possible to say more about the
value of X.

For instance, in the story, let G be the
number of groups of monsters. Then
G ∼ Unif({1, 2, 3}). Let N1 be the number of
monsters in the first group, N2 the number
in the second group (if there is a second
group), and N3 be the number in the third
group (if there is a third group). Each Ni is
uniform over {10, 11, . . . , 20}.

Then let T be the total number of
monsters. Then the description of T

depends on the value of G.

T = N1 if G = 1

T = N1 +N2 if G = 2

T = N1 +N2 +N3 if G = 3

Or this can be written in a single line as:

T =
G∑
i=1

Ni.

If the value of G was known, then it
would be possible to find the mean of T .
For instance,

E[T | G = 1] = E[N1] = 15

E[T | G = 2] = E[N1 +N2] = E[N1] + E[N2] = 30

E[T | G = 3] = E[N1] + E[N2] + E[N3] = 45.

Another way to say this is that

E[T | G] = 15G.

Plugging 1 or 2 or 3 in for G gives the
correct answer in the right hand side.

This should make sense, if G is known,
then the mean of T is just the value 15
summed G times, which is 15G.

The value of E[T | G] is itself a random
variable, in fact it is h(G), where h(g) = 15g
is a simple function.

So what is the next step in solving the
story? That would be the Fundamental
Theorem of Probability.

THE FUNDAMENTAL
THEOREM OF
PROBABILITY
Probability is about information, and
conditioning is the way that information is
presented in probability problems. So it
should not be a surprise that the most
important theorem about conditioning
should be the Fundamental Theorem of
Probability.

The FTP works as follows. Given
knowledge of random variable Y , random
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variable X has a mean that is denoted
E[X | Y ]. That is itself a random variable
that is a function of Y .

Now suppose that Y was not known, but
still a random variable. Suppose the value
of E[X | Y ] is averaged over all possible
values that Y could take on. The FTP says
that the result, will be the average over X.

In short, the average over averages of X
with partial information Y , is the total
average of X. This is the Fundamental
Theorem of Probability.

T6 The Fundamental Theorem of Probability
Given an integrable random variable X ,

E[E[X | Y ]] = E[X].

SOLVING THE STORY

Back to the Story. The total number of
monsters given the number of groups is

E[T | G] = 15G.

But the goal is to find E[T ]. The
Fundamental Theorem of Probability says
that the conditioning can be undone by
taking the mean of both sides of the
equation again.

E[E[T | G]] = E[15G] = 15E[G].

Since G ∼ Unif({1, 2, 3}), E[G] = (1 + 3)/2 = 2.
Hence

E[T ] = 30.

This seems reasonable: there were an
average of two groups of monsters and
each group of monsters contained on
average 15 members. That is what makes
the Fundamental Theorem of Probability
so compelling; once you realize what it is
saying, it makes sense in a very deep way.

PROPERTIES OF
CONDITIONAL
EXPECTATION
When a random variable Y is part of the
conditioning, it behaves more like a
constant than a random variable. Here are

some properties of conditional
expectations that assist in evaluating them.
These extend the rules already in place for
expected value to conditional expected
value.

F55 Properties of conditional expectation.
1. Linearity. For a and b constants, X , Y , and Z

random variables,

E[aX + bY | Z] = aE[X | Z] + bE[Y | Z].

2. Independence. If X and Y are independent
random variables then

E[X | Y ] = E[X].

3. Multiplication. For any deterministic function
f ,

E[f(Y )X | Y ] = f(Y )E[X | Y ].

E49 Suppose E[X | Y ] = 5Y 2 and E[W | Y ] =

3Y 2. What is E[X − Y +W | Y ]?
Answer. By linearity, the answer a can be written
as

a = E[X − Y +W | Y ]

= E[X | Y ]− E[Y | Y ] + E[W | Y ].

Using the values given in the problem together with
the fact that E[Y | Y ] = Y gives

E[X − Y +W | Y ] = 8Y 2 − Y.

EXPECTATION AND
PROBABILITY TREES
In the FTP, E[X] = E[E[X | Y ]]. In the right
hand side, there is an inner mean E[X | Y ]
and an outer mean E[· · · ].

Earlier, the inner mean was evaluated
first and then the outer mean. For some
problems, it helps to evaluate the outer
mean first, and then the inner mean.

E50 The price of a tech stock is highly dependent
on the larger economy. A particular stock is
modelled as follows.

When the economy is good (which happens with
probability 20%), the stock will grow 30%. when the
economy is medium (45%), the stock will grow 10%.
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when the economy is poor (35%), the stock will
shrink by 10%.

What is the average the stock grows?
Answer. For a random variable W that takes on
discrete values,

E[W ] =
∑
i

iP(W = i).

Create a random variable X for the economy
where

(X = 1) = the economy is good

(X = 2) = the economy is medium

(X = 3) = the economy is poor

and let S be the fractional growth in the stock.
Then the goal is to find

E[S] = E[E[S | X]].

The key is to see that E[S | X] takes on three
values, it will be one of

E[S | X = 1] = 30%

E[S | X = 2] = 10%

E[S | X = 3] = −10%

So that means that our answer a is

a = E[E[S | X]]

=

3∑
i=1

E[X | X = i]P(X = i)

= (0.3)(0.2) + (0.45)(0.1) + (0.35)(−0.1),

which is 7% .

In order to keep straight what is
happening in this kind of argument, a
graphical form called expectation trees can
be used.

To find E[X]E[E[X | Y ]], a branch is
created for each value that Y can take on.
The branch is labeled with the probability
that Y takes on that value. At the end of
the branch, the value of X given that Y
value is written.

In the last example, the expectation tree
looks as follows.

The value of the expectation tree is the
sum of the product of the edge labels with
the value at the end of the branch. In the
tree above, this gives

E[S] = (0.2)(0.3) + (0.45)(0.1) + (0.35)(−0.1)

= 0.07

as above.
Remember that because of the

relationship E[I(s)] = P(s), expectations are
generalizations of probabilities. When
using an expectation tree to compute
probabilities, this is called a probability
tree. The algebraic version of this is called
the Law of Total Probability.

F56 Suppose that s1, s2, . . . are disjoint events
such that ∨si = T. Then for any statement r,

P(r) =
∞∑
i=1

P(r | si)P(si).

THE EXPECTATION OF A
GEOMETRIC RANDOM
VARIABLE
Recall that B1, B2, . . . is a Bernoulli process
of rate p if the variables are iid Bernoulli
random variables with mean p.

For such a process, let

G = inf{i : Bi = 1}.

Then G is a geometric random variable,
and write G ∼ Geo(p).

The FTP can be used to find the mean of
a geometric random variable.
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F57 The mean of G ∼ Geo(p) is 1/p.

Proof. Condition on the first Bernoulli B1.
Then

E[G] = E[E[G | B1]]

= E[G | B1 = 1]P(B1) +

E[G | B1 = 0]P(B1).

If B1 = 1, then G = 1 because G is
counting the number of draws until a 1
appears.

If B1 = 0, then the first flip is wasted, so
it is neccessary to wait another G steps to
get the first one. In other words, [G | B1 =
0] ∼ 1 +G.

Hence

E[G] = (1)(p) + (E[G] + 1)(1− p).

Solving for E[G] gives E[G] = 1/p.

CONNECTION TO
CONDITIONAL
PROBABILITY
Expectation generalizes probability
through the relationship

P(s) = E[I(s)]

for an event s. Similarly, conditional
expectation generalizes conditional
probability. To see why this is true,
suppose X = I(s) and Y = I(r). Then

E[XY ] = E[E[XY | Y ]]

There are only two possible values for Y ,
1, and 0. For Y = 1,

E[XY | Y = 1] = E[X · 1 | Y = 1]

= E[X | Y = 1]

For Y = 0,

E[XY | Y = 0] = E[X · 0] = 0.

That means

E[XY ] = E[E[XY | Y ]]

= E[X | Y = 1]P(Y = 1) + (0)P(Y = 1).

Here

XY = I(s)I(r) = I(sr).

Conditioning on Y = 1 is the same as
conditioning on r being true. So

E[X | Y = 1] = P(s | r).

Hence

E[I(sr)] = E[I(s) | r]P(r),

and since the mean of an indicator
function is the probability that the thing
inside the indicator function occurs,

P(sr) = P(s | r)P(r).

Therefore, conditional probability is a
special case of conditional expectation in
the same way as regular probability is a
special case of expectation.

185. MEAN OF AN EXPONENTIAL

For W ∼ Exp(2), set up the following
integrals.

a. E[W ].

b. E[W 2].

c. E[I(W < 3)]

186. MEAN OF AN EXPONENTIAL

For U ∼ Unif([−5, 5]), set up the following
integrals.

a. E[U ].

b. E[U2].

c. E[I(U < 3)]

187. MEAN OF FUNCTIONS OF A
CONTINUOUS UNIFORM

An exponential random variable T ∼ Exp(λ)
has density fT (t) = λ exp(−λt)I(t ≥ 0). Find
E[T ].

188. MEAN OF A GENERAL
EXPONENTIAL

Consider a random variable T ∼ Exp(λ)
with density fT (t) = λ exp(−λt)I(t ≥ 0). Find
E[T 2].
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189. MONTE CARLO WITH
UNIFORMS

Using the function runif that generates
U ∼ Unif([0, 1]), write R code to estimate∫ 1

0

√
u du

using 106 samples.

190. MONTE CARLO WITH
EXPONENTIALS

Using ‘rexp‘ that generates random
variables with an exponential distribution,
write R code to estimate∫ ∞

0
sin(x) exp(−0.5x) dx.

191. POLYNOMIALS OF
CONTINUOUS UNIFORMS

Let U ∼ Unif([0, 1]). Find E[(1− U)(1 + U)].

192. POLYNOMIALS OF DISCRETE
UNIFORMS

Let W ∼ Unif({1, 2, 3}). Find E[(1 − W )(1 +
W )].

193. A NONINTEGRABLE DENSITY

Suppose X has density fX(x) = (4/τ)/(1 +
x2). Show that X is not integrable.

194. A NONINTEGRABLE RANDOM
VARIABLE

Show that if U ∼ Unif([0, 1]), that U−1 is not
integrable.
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CHAPTER 17: JOINT DENSITIES OF
RANDOM VARIABLES

T
A RANGER WAS WAITING FOR

two comrades to arrive. Bored,
the Ranger began to model their
arrival times. The first step was to

give the arrival times names: T1 for the
arrival time of the first comrade and T2 for
the arrival time of the second comrade.

Furthermore, the Ranger modeled T1 and
T2 using a joint density,

f(T1,T2)(t1, t2) = exp(−3t1 − t2/2)I(t1, t2 ≥ 0).

What is P((T1, T2) ∈ [0, 0.6]× [0, 1.5])?

UNIVARIATE RANDOM
VARIABLES
A random variable X ∈ R in one dimension
is called univariate, where uni here is the
Latin prefex for one. A helpful mnemonic
to remember that a univariate random
variable has only a single value, is that
unicorns have only a single horn.

If a random variable lives in a higher
dimension, for instance (T1, T2) as in the
Story for today, the random variable is
called multivariate.

In this section, it will be shown how the
notion of densities for univariate random
variables can be extended to the
multivariate case. This means some higher
dimensional sums and integrals are
coming, so review that Multivariable
Calculus course you took and get ready for
higher dimensions!

DENSITIES IN HIGHER
DIMENSIONS
Recall that differential notation P(X ∈ da)
means the probability that the random
variable X is in a small differential element
around the value a. So far only random
variables in one dimension have been
considered. In this section these
differential elements will be in two or more
dimensions.

Write

P(X ∈ da) = fX(a) da

to mean that the random variable X has
density fX . This holds even when X is a
multidimensional variable, for instance it
could be that X = (X1, X2, X3) and is three
dimensional. In which case, you could
write out the dimensions explicitly, using

P(X1 ∈ dx1, X2 ∈ dx2, X3 ∈ dx3)

equals to

f(X1,X2,X3)(x1, x2, x3) dx1 dx2 dx3.

Just like in one dimension, the function
f(X1,X2,X3) on the right hand side is called
the density of (X1, X2, X3).

F58 Say that a random vector (X1, X2, . . . , X3)

has a density with respect to product measure
µ1 × · · · × µn if

P(X1 ∈ dµ1, . . . Xn ∈ dµn)

is equal to

f(X1,...,Xn)(x1, . . . , xn) dµ1 × · · · × dµn.
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Integration in higher dimensions
This differential notation means that if the goal is
to find P((X1, . . . , Xn) ∈ A), just integrate the
product measure over the region. So

P((X1, . . . , Xn) ∈ A)

equals∫
(x1,...,xn)∈A

f(X1,...,Xn)(x1, . . . , xn) dµ1×· · · dµn.

If the measure is counting measure, this
integral just becomes a sum as in one
dimension.

E51 Suppose (A,B) ∈ Ω, where Ω = {1, 2} ×
{1, 2, 3} has density

f(A,B)(a, b) =
(a+ 2b)

33
I((a, b) ∈ Ω).

What is P(A ≤ 2)?
Answer. Sum over all the elements of Ω with b ≤
2. These are the points {1, 1}, {2, 1}, {1, 2}, {2, 2},
which gives

P(A ≤ 2) =
∑

(a,b)∈Ω:a≤2

f(A,B)(a, b)

The four terms in the sum are

f(A,B)(1, 1)+f(A,B)(2, 1)+f(A,B)(1, 2)+f(A,B)(2, 2),

which means

P(A ≤ 2) =
3 + 4 + 5 + 6

33
=

18

33
=

6

11
,

so about 54.54% .

SOLVING THE STORY

In the Story, the density was given as

f(T1,T2)(t1, t2) = exp(−3t1 − t2/2)I(t1, t2 ≥ 0).

So to find P(T1 ∈ [0, 0.6], T2 ∈ [0, 1.5]) this
joint density is integrated over this region.
Because this is a density with respect to
Lebesgue measure, the integral is over a
subset of R2.

The probability

P(T1 ∈ [0, 0.6], T2 ∈ [0, 1.5])

is equal to the integral∫
(t1,t2)∈A

exp(−3t1 − t2/20)I(t1, t2 ≥ 0) dR2,

where A = [0, 0.6]× [0, 1.5].
Integrals in one dimension are easier to

do than integrals in multiple dimensions.
A theorem named Tonelli’s Theorem tells
us that whenever the integrand is greater
than or equal to 0 (as they always are with
densities), you can use iterated integrals to
find the integral. That means the problem
of

p = P(T1 ∈ [0, 0.6], T2 ∈ [0, 1.5])

can be written as an iterated integral

p =

∫ 0.6

t1=0

∫ 1.5

t2=0
exp(−3t1 − t2/20)dt2 dt1.

The total dimension must be the same
for the original an the iterated integrals,
That is, if you started with one two
dimensional integral, you will end up with
two one dimensional integrals in the
iterated version.

To solve an iterated integral, work from
the inside out.

p =

∫ 0.6

t1=0
−20 exp(−3t1 − t2/20)|1.50

=

∫ 0.6

t1=0
20[exp(−3t1)− exp(−3t1 − 0.075)|1.50

= 20(−3)−1[exp(−3t1)− exp(−3t1 − 0.075)]|0.60

which is about 0.4020 .

MARGINAL DENSITIES
D70 Consider a random vector (X1, . . . , Xn)

where n ≥ 2. Then the density of a particular Xi is
called a marginal density.

To calculate these marginal densities,
use the fact that P(X1 ∈ dx1) can be written
as

P(X1 ∈ dx1, X2 ∈ R, X3 ∈ R, . . . Xn ∈ R).

This right hand side can be found by
integrating out the variables that we do not
want to be in the density. To find the
density of X1, integrate the joint density

f(X1,...,Xn)(x1, . . . , xn)
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with respect to x2, x3, and so on up to xn,
all from negative infinity to positive
infinity.

A useful notation for a vector v with
component i removed is v−i. For instance,
if v = (1, 2, 3, 4), then v−3 = (1, 2, 4). That
notation makes the following fact easier to
see.

F59 Let X = (X1, . . . , Xn) and x = (x1, . . . , xn).
Given the density fX(x) of X , the density of X−i

at x−i is

fX−i
(x−i) =

∫
xi∈R

fX(x) dµi.

If you want the remove all but one
random variable in the component,
integrate out all but one random variable.

E52 Suppose as before that (A,B) ∈ Ω, where
Ω = {1, 2} × {1, 2, 3} has density

f(A,B)(a, b) =
(a+ 2b)

33
I((a, b) ∈ Ω).

a. What is the density of A?
b. What is the density of B?

Answer. a. To get the density of A, we integrate out
B. Because we are working on discrete variables,
integration becomes summation:

fA(a) =

3∑
b=1

f(A,B)(a, b)

=

[
a+ 2

33
+

a+ 4

33
+

a+ 6

33

]
I(a ∈ {1, 2}),

which simplifies to

fA(a) =

[
a+ 4

11

]
I(a ∈ {1, 2}).

b. To get the density of B we integrate out A.
That gives

fB(b) =

2∑
a=1

f(A,B)(a, b)

=

[
1 + 2b

33
+

2 + 2b

33

]
I(b ∈ {1, 2, 3}),

which reduces to

fB(b) =
3 + 4b

33
I(b ∈ {1, 2, 3}).

E53 Let X = (X1, X2, X3) have joint density
fX(x), where x = (x1, x2, x3), of

(1/48)[x1 + 2x2 + 3x3]I(x1, x2, x3 ∈ [0, 2])

What is the density of X2?
Answer. Let A = [0, 2]× [0, 2]× [0, 2], and

g(x) =
1

48
[x1 + 2x2 + 3x3]

so
fX(x) = g(x)I(x ∈ A).

The indicator will change the limits of integration,
and the g(x) is the part that varies with x.

To find the density of X2, it is necessary to
integrate out both X1 and X3. This can be done as
follows:

fX2
(x2) =

∫
x1∈R

∫
x3∈R

g(x)I(x ∈ A) dx3 dx1.

Use the indicator function to change the limits, so

fX2(x2) = I(x2 ∈ [0, 2])

∫ 2

x1=0

∫ 2

x3=0

g(x) dx3 dx1

Do the inside integral first to get

I3 =

∫ 2

x3=0

g(x) dx3

=
1

48
[x1x3 + 2x2x3 + (3/2)x2

3]|2x3=0

=
1

24
[x1 + 2x2 + 3].

Then

I2 =

∫ 2

x1=0

∫ 2

x3=0

g(x)dx3dx1

=

∫ 2

x1=0

I3dx1

=

∫ 2

x1=0

1

24
[x1 + 2x2 + 3] dx1

fX2(x2) = I(x2 ∈ [0, 2])

∫ 2

x1=0

I3 dx1

= I(x2 ∈ [0, 2])

∫ 2

x1=0

1

24
[x1 + 2x2 + 3] dx1

= I(x2 ∈ [0, 2])
1

24
[
1

2
x2
1 + 2x2x1 + 3x1]|2x1=0

=
1

24
[2 + 4x2 + 6]I(x2 ∈ [0, 2]),

which means

fX2
(x2) =

2 + x2

6
I(x2 ∈ [0, 2]).
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SHOWING
INDEPENDENCE USING
DENSITIES
Suppose that X has density fX(x) with
respect to µ1, Y has density fY (y) with
respect to µ2, and their joint density is
f(X,Y )(x, y) = fX(x)fY (y) with respect to
µ1 × µ2. Then consider sets A (measurable
with respect to X) and B (measurable with
respect to Y ).

Then

p = P(X ∈ A, Y ∈ B)

=

∫
(x,y)∈A×B

f(X,Y )(x, y) d[µ1 × µ2]

=

∫
(x,y)∈A×B

f1(x)f2(y) d[µ1 × µ2]

=

∫
x∈A

∫
y∈B

f1(x)f2(y) dµ2 dµ1

=

∫
x∈A

f1(x)

∫
y∈B

f2(y) dµ2 dµ1

=

∫
x∈A

f1(x)P(Y ∈ B) dµ2

= P(Y ∈ B)

∫
x∈A

f1(x) dµ1

= P(Y ∈ B)P(X ∈ A).

This proves the following fact.

F60 Suppose that X has density fX(x) with
respect to µ1, Y has density fY (y) with respect to
µ2, and their joint density is
f(X,Y )(x, y) = fX(x)fY (y). Then X and Y are
independent.

It turns out this works in both
directions!

F61 If (X,Y ) have a joint density that factors as

f(X,Y )(x, y) = f1(x)f2(y),

then the density of X is proportional to f1(x), and
the density of Y is proportional to f2(y).

E54 Show that X and Y with joint density
f(X,Y )(x, y) = 2 exp(−x − 2y)I(x ≥ 0, y ≥ 0) are
independent.

Answer. Note that the joint density factors into a
piece that only depends on the dummy variable for
X , and one piece that only depends on the dummy
variable for Y . Hence they are independent!

f(X,Y )(x, y) =[2 exp(−x)I(x ≥ 0)]·
[exp(−2y)I(y ≥ 0)].

195. JOINT DENSITIES

Suppose (X,Y ) have joint density

f(X,Y )(x, y) = (x2 + xy)I((x, y) ∈ [0, 1]× [0, 1]).

a. Find P(X ≤ 0.4, Y ≤ 0.3).
b. Find the density of X, fX .
c. Are X and Y independent?

196. MORE JOINT DENSITES

Suppose (W,Y ) has probability 1 of falling
in the set

Ω = [0, 2]× [0, 1].

Writing (w, y) ∈ Ω means that w ∈ [0, 2] and
y ∈ [0, 1].

Further, suppose (W,Y ) has density

f(W,Y )(w, y) =
1

4
(4− w − y − wy)I((w, y) ∈ Ω).

a. Find P(W ≤ 1, Y ≤ 0.5).
b. Find the density of Y .

197. INDEPENDENCE

Let X with density fX(s) = exp(−2s)I(s ≥ 0)
and Y with density fY (r) = 2rI(r ∈ [0, 1])
be independent random variables. What is
the joint density

f(X,Y )(s, r)?

198. MULTIPLE INTEGRALS

Suppose the joint density of X1 and X2 is
over the region A = [0, 1]× [0, 1].

f(X1,X2)(x1, x2) =
x1 + x2
|x1 − x2|

I((x1, x2) ∈ A).

Find P(X1 > X2 + 0.1).

199. DISCRETE JOINT DENSITIES

Suppose (X,Y ) are uniform over the four
points (−1, 1), (−1,−1), (0, 0), (1, 2).
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a. What is the density of X?
b. What is the density of Y ?
c. Are X and Y independent?

200. JOINT DISCRETE UNIFORMS

Suppose (X,Y ) are uniform over the four
points (−1, 1), (−1,−1), (1, 1), (1,−1).
a. What is the density of X?
b. What is the density of Y ?
c. Are X and Y independent?

201. FACTORING CONTINUOUS
DENSITIES

Suppose
f(X,Y )(x, y) = I(x ∈ [0, 2]) exp(−2y)I(y ≥ 0).
Show that X and Y are independent.

202. FACTORING DISCRETE
DENSITIES

Suppose A and B have joint density
f(A,B)(a, b) = 6a2bI(a ∈ [0, 1], b ∈ [0, 1]). Prove
that A and B are independent.

203. DEPENDENT JOINT
CONTINUOUS UNIFORMS

Suppose X = (X1, X2) is uniform over the
upper half of the unit circle given by

A = {(x1, x2) : x2 ≥ 0, x21 + x22 ≤ 1}.

Since Leb(A) = τ/2, this has density

f(X1,X2)(x1, x2) =
2

τ
I({(x1, x2) ∈ A).

Show that X1 and X2 are not
independent.

204. JOINT CONTINUOUS
UNIFORMS

Suppose that Ω is in intersection of

[0, 1]× [0, 1]× [0, 1]

and

{(x1, x2, x3) : x1 + x2 + x3 ≥ 3/2}.

Suppose X = (X1, X2, X3) has joint
density

fX(x) =
6

5
I(x ∈ Ω).

Prove that these random variables are
not independent by considering

P(X1 ≤ 1/2, X2 ≤ 1/2, X3 ≤ 1/2).
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CHAPTER 18: RANDOM VARIABLES AS
VECTOR SPACES

T
HE CHEST OF THE MAD KING

Triffan had been lost for centuries,
and was known to contain
thousands of gold and silver

pieces. In fact, the Explorer modeled the
treasure as being equally likely to contain
(0, 0), (0, 1), (0, 2), (1, 2), (1, 1), where (for
instance) (1, 2) would mean that there are
1000 gold pieces and 2000 silver pieces.
What is the covariance between the
number of gold pieces and the number of
silver pieces?

VECTOR SPACE
A vector space is built up from two types of
objects, vectors which can be added
together to get new vectors, and scalars
which can stretch out vectors to give new
vectors.

Displacement vectors are typically the
first type of vector encountered. In such a
vector, the tail of the vector represents the
starting location for an object, and the
head of the vector shows where the object
has been moved to.

While this is a common type of vector, it
is far from the only kind. In probability,
real-valued random variables can be
considered vectors, and then real numbers
can be considered scalars.

For instance, if X and Y are random
variables, then X + Y is also a random
variable. So if these are thought of as
vectors, adding them yields another vector.

Similarly, multiplying by a scalar gives
something like 4X or −2Y , which again are
random variables.

But that is not the only way to set up
vectors! Suppose that X is an integrable
random variable, and so has a finite mean.
Then the centered version of the random
variable can be defined.

D71 For an integrable random variable X ,

Xc = X − E[X]

is the centered version of X .

F62 The centered version of an integrable random
variable has mean 0.

Proof. The value E[X] is a constant, and so

E[X − E[X]] = E[X]− E[X] = 0.

F63 Let X and Y both have mean 0. Then for
a, b ∈ R, E[aX + bY ] = 0.

Proof. By linearity of expectations

E[aX + bY ] = aE[X] + bE[Y ] = a · 0 + b · 0 = 0.

Why is that so important? Because in
order to qualify as vectors, linear
combinations of vectors must also be
vectors.

D72 A vector space is a set of vectors V together
with a set of scalars S, and two operations with the
following properties.

1. There is vector addition, +, such that
(∀v, w ∈ V )(v + w ∈ V ). This addition is
associative and commutative. There is a zero
vector 0 such that (∀v ∈ V )(v + 0 = v). There
exist inverses, so that
(∀v ∈ V )(∃w ∈ V )(v + w = 0).

2. There is scalar multiplication, · such that
(∀s ∈ S)(∀v ∈ V )(sv ∈ V ). This multiplication has
an identity element 1 ∈ S so that (∀v)(1v = v).
Also (∀a, b ∈ S)(∀v ∈ V )((ab)b = a(bv)). It is
distributive in two ways:

(∀a ∈ S)(∀v, w ∈ V )(a(v + w) = av + aw)

and

(∀a, b ∈ S)(∀v ∈ V )((a+ b)v = av + bv).

It is straightforward to verify that these
rules are obeyed by our centered random
variables.
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F64 Let V be the set of random variables with
mean 0, and S be real numbers. Then (V, S) form
a vector space.

INNER PRODUCTS
Some vector spaces have what is called an
inner product that applies to pairs of
vectors. For displacement vectors, the
value of the inner product tells us about
the angle between the two vectors.

For centered random variables, the inner
product tells us how the value of one
variable affects the average value of the
other.

When the inner product is high, a high
value of one centered variable leads to a
high value for the other. When the inner
product is negative, then a high value of
one centered variable leads to a lower
value for the other.

In general, an inner product is defined as
follows.

D73 For a vector space (V, S), a real valued
inner product is a function that maps pairs of
vectors to a real number with four properties. For
x, y ∈ V , write ⟨x, y⟩ for the inner product of x and
y. Let x, y, and z be vectors, and α be a scalar.
Then the four properties obeyed by an inner
product are as follows.

1. ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩.
2. ⟨αx, y⟩ = α⟨x, y⟩.
3. ⟨x, y⟩ = ⟨y, x⟩.
4. ⟨x, x⟩ ≥ 0, where equality holds if and only if

x = 0.

For displacement vectors, the usual
inner product is called the dot product. For
integrable random variables, the inner
product is called the covariance.

D74 Given integrable random variables X and Y ,
if XY is integrable then define the covariance
between X and Y as

cov(X,Y ) = E[(X − E[X])(Y − E[Y ])].

NORMS
In mathematics, the term norm refers to a
measure of the size of a vector. To be a

valid size, a norm needs to have three
properties. First, if you scale the vector by
c, the norm of the vector should grow like
c. Second, the triangle inequality holds:
the norm of the sum of two vectors is at
most the sum of the norms of the vectors.
Finally, a normal evaluates to 0 if and only
if v is the zero vector.

D75 A norm of a vector space takes as input a
vector and returns a nonnegative real number.
Write the norm of v as v. then a norm must obey
the following rules.

1. For any scalar c ∈ R and vector v, ||cv|| = |c| ·
||v||.

2. For any vectors v and w,

||v + w|| ≤ ||v||+ ||w||.

3. For any vector v, v ≥ 0, and only equals 0 if v
is the zero vector.

For vector spaces with an inner product,
one easy way to build a norm is to take the
square root of the inner product of a vector
with itself.

D76 Call v =
√
⟨v, v⟩ an inner product norm.

When the dot product is used with
displacement vectors, this gives the
Euclidean norm which is commonly
considered the length of the vector.

If covariance is used as the inner
product, the covariance of a random
variable with itself is called the variance.
The square root of this gives the norm
called the standard deviation.

D77 The variance of integrable random variable
X is

var(X) = E[(X − E[X])(X − E[X])].

The standard deviation of random variable X is

SD(X) =
√

var(X).
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CALCULATING THE
COVARIANCE AND
STANDARD DEVIATION
The definitions of covariance and standard
deviation are not the usual way for
actually calculating these values. instead,
the following formulas are often used.

F65 For integrable X and Y ,

cov(X,Y ) = E[XY ]− E[X]E[Y ]

var(X) = E[X2]− E[X]2

These follow from linearity of
expectations.

Proof. For covariance:

c = cov(X,Y )

= E[(X − E[X])(Y − E[Y ])]

= E[XY − Y E[X]−XE[Y ] + E[X]E[Y ]]

= E[XY − E[X]E[Y ]− E[X]EY + E[XE[Y ]]

= E[XY ]− E[X]E[Y ].

Applying this to the variance gives

var(X) = cov(X,X) = E[XX]− E[X]E[X].

SOLVING THE STORY

The density here is 1/5 for each of the
(X,Y ) possible values: (0, 0), (0, 1), (0, 2),
(1, 2), or (1, 1).

To find a mean of something like XY ,
just multiply X times Y times the
probabilities that each occurs and add
them up! That leads to

E[XY ] = 0 · 0 · 1
5
+ 0 · 1 · 1

5
+ · · ·+ 1 · 1 · 1

5
=

3

5
.

E[X] = 0 · 1
5
+ 0 · 1

5
+ 0 · 1

5
+ 1 · 1

5
+ 1 · 1

5

=
2

5
.

E[Y ] = 0 · 1
5
+ 1 · 1

5
+ 2 · 1

5
+ 2 · 1

5
+ 1 · 1

5
=

6

5
.

This makes the covariance

3

5
− 2

5
· 6
5
=

15− 12

25
=

3

25
,

which is 0.12.
If X is the number of 1000’s of gold

pieces, and Y is the number of 1000’s of
silver, then

cov(X,Y ) = 0.12.

Therefore, by the rules of covariance,

cov(1000X, 1000Y ) = 106(0.12) = 120000 .

PROOF COVARIANCE IS
AN INNER PRODUCT
Here the fact that covariance is an inner
product is shown. The properties can be
shown one at a time. The first property is
that covariance is distributive.

F66 Let X , Y , and W be integrable with finite
covariance between each pair. Then

cov(X + Y,W ) = cov(X,W ) + cov(Y,W ).

Proof.

C = cov(X + Y,W )

= E[(X + Y )W ]− E[X + Y ]E[W ]

= E[XW + YW ]− (E[X] + E[Y ])E[W ]

= E[XW ] + E[YW ]− E[X]E[W ]− E[Y ]E[W ]

= cov(X,W ) + cov(Y,W ).

The second property is scaling.

F67 Let X and Y have finite covariance, and a ∈
R. Then

cov(aX, Y ) = E[(aX)Y ]− E[aX]E[Y ]

= aE[XY ]− aE[X]E[Y ]

= a cov(X,Y ).

The third property is commutativity.

F68 For X and Y with finite covariance,
cov(X,Y ) = cov(Y,X).

Proof. Note

cov(X,Y ) = E[XY ]− E[X]E[Y ]

= E[Y X]− E[Y ]E[X]

= cov(Y,X).
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The final property says that an inner
product is nonnegative, and only equals 0
when the vector is 0. To show this, it is
necessary to define our vectors a bit more
carefully.

D78 Say that X is shift equivalent to Y if there
exists a c such that X + c and Y have the same
distribution.

Then for us a vector technically consists
of a set a shift-equivalent integrable
random variables. In particular, all
constants are shift equivalent to the
number 0.

F69 For all integrable random variables X , it holds
that cov(X,X) ≥ 0. Moreover, if cov(X,X) = 0,
then there exists a constant c ∈ R such that
P(X = c) = 1.

Proof. The square of any number is
nonnegative, hence

cov(X,X) = E[(X − E[X])2] ≥ E[0] = 0.

Now assume cov(X,X) = 0. Let ϵ > 0.
Then indicator functions are always 0 or 1,
so multiplying a nonnegative expression by
an indicator function can only possibly
make it smaller. Hence

0 = E[(X − E[X])2]

≥ E[(X − E[X])2I(|X − E[X]| ≥ ϵ)].

For the indicator to be 1, it must hold that
(X − E[X])2 ≥ ϵ2. Hence

0 ≥ E[(X − E[X])2I(|X − E[X]| ≥ ϵ)]

≥ E[ϵ2I(|X − E[X]| > ϵ)]

= ϵ2P(|X − E[X]| > ϵ) ≥ 0

which means

ϵ2P(|X − E[X]| > ϵ) = 0.

Since ϵ2 > 0, that means P(|X − E[X]| >
ϵ) = 0 for all ϵ > 0.

In particular, letting ϵ ∈ {1, 1/2, 1/3, . . .}
gives us a countable sequence of events
whose total probability is 0. The negation
of the union of those events then gives
P(|X − E[X]| = 0) = 1.

That is, P(X = E[X]) = 1, which
completes the proof.

F70 Covariance is an inner product.

Proof. This follows immediately from the
last four facts.

205. RULES OF INNER PRODUCTS

Say cov(X,Y ) = 4.2. Find cov(3X,−2Y ).

206. MORE RULES OF INNER
PRODUCTS

Suppose cov(X,Y ) = 4.2 and cov(X,W ) =
−2.3. What is cov(2X,Y −W )?

207. RULES OF INNER PRODUCT
NORMS

Suppose that SD(X) = 1.8.
a. What is the variance of X?
b. What is SD(3X)?
c. What is SD(−3X)?

208. STANDARD DEVIATION

Suppose SD(Y ) = 0.4.
a. What is var(Y )?
b. What is SD(Y − Y )?
c. What is SD(Y + Y )?

209. STANDARD DEVIATION OF
DISCRETE RANDOM VARIABLES

Say X is discrete with density fX(−1) = 0.6,
fX(0) = 0.3, fX(1) = 0.1.
a. Find E[X].
b. Find SD(X).

210. DISCRETE VIA DENSITY

Say W is discrete with density
fW (0) = fW (1) = 0.2, fW (2) = fW (3) = 0.3.
a. Find E[W ].
b. Find SD(W ).

211. COVARIANCE OF A JOINT
UNIFORM

Let (X,Y ) be uniform over the triangle with
vertices (0, 0), (0, 1), and (1, 0). Find
cov(X,Y ).

212. A UNIFORM TRIANGLE

Suppose (A,B) is uniform over the triangle
with vertices (0, 0), (1, 0), (1, 1). Find
cov(A,B).
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213. CONTINUOUS UNIFORM

Suppose (X,Y ) is uniform over the triangle
A given by

A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x ≤ y},

so has density

f(X,Y )(x, y) = 2I((x, y) ∈ A).

a. Find E[XY ].
b. Find E[X].
c. Find E[Y ].
d. Find cov(X,Y ).

214. CONTINUOUS UNIFORM

Suppose (S, T ) is uniform over the triangle
B given by

B = {(s, t) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 2x ≤ y},

so has density

g(S,T )(s, t) = 2I((s, t) ∈ B).

a. Find E[ST ].
b. Find E[S].
c. Find E[T ].
d. Find cov(S, T ).
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CHAPTER 19: CORRELATION

T
HE CHEST OF THE MAD KING

Triffan had been lost for centuries,
and was known to contain
thousands of gold and silver

pieces. In fact, the Explorer modeled the
treasure as being equally likely to contain
(0, 0), (0, 1), (0, 2), (1, 2), (1, 1), where (for
instance) (1, 2) would mean that there are
1000 gold pieces and 2000 silver pieces.
What is the correlation between the
number of gold pieces and the number of
silver pieces?

CORRELATION
In the past chapter the idea of covariance
was introduced. Covariance is a type of
product, an inner product to be exact,
between two random variables X and Y .
So because it is like the product of two
things, the units of covariance will be the
product of the units of X and Y . For
instance, if X is measures in miles and Y
is measured in per hour units, then
cov(X,Y ) has units of miles per hour.

It is often useful to have a measurement
of the relation between X and Y that is
unitless. For instance, the angle formed by
two displacement vectors v and w is such a
measurement: it is unaffected by the
length of the individual vectors.

To accomplish this with random
variables, think about the following. First,
since var(X) = cov(X,X), so var(X) has
units equal to the square of the units of X.
Hence SD(X) =

√
var(X) has units equal to

the units of X. Finally, that means that
X/ SD(X) is unitless, it does not have any
units at all!

If both X and Y are centered and then
inversely scaled by their standard
deviation, the result are unitless. The
covariance of these scaled random
variables are called the correlation of the
original random variables. Remember that
scaling can be pulled out of an inner
product, which gives rise to the following.

D79 The correlation between integrable random
variables X and Y with finite covariance and
nonzero standard deviations is

cor(X,Y ) =
cov(X,Y )

SD(X) SD(Y )
.

SOLVING THE STORY

To calculate the correlation between two
random variables X and Y , it is necessary
to calculate E[X], E[Y ], E[X2], E[Y 2], and
E[XY ]. For the question of the day, the
probability of each outcome is 1/5. Then
sum the values of any function g(X,Y )
over the five possibilities
(0, 0), (0, 1), (0, 2), (1, 2), (1, 1).

E[X] =
1

5
[0 + 0 + 0 + 1 + 1] =

2

5

E[Y ] =
1

5
[0 + 1 + 2 + 2 + 1] =

6

5

E[X2] =
1

5
[02 + 02 + 02 + 12 + 12] =

2

5

E[Y 2] =
1

5
[0 + 12 + 22 + 22 + 12] =

10

5

E[XY ] =
1

5
[0 · 0 + 0 · 1 + 0 · 1 + 0 · 2 + 1 · 2 + 1 · 1]

=
3

5

That makes

cor(X,Y ) =
(3/5)− (2/5)(6/5)√

[(2/5)− (2/5)2][(10/5)− (6/5)2]
,

which is about 0.3273 .

BOUNDS ON THE
CORRELATION
Correlation measures how aligned the
random variables are. For instance,
suppose Y = 2X. Then

cor(X, 2X) =
cov(X, 2X)

SD(X) SD(2X)

=
2 var(X)

2 SD(X) SD(X)

= 1.
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Note the 2 canceled there. That will
happened for any positive constant. Now
try X times a negative constant.

cor(X,−2X) =
cov(X,−2X)

SD(X) SD(−2X)

=
−2 var(X)

| − 2|SD(X) SD(X)

= −1.

So the answer was 1 for the correlation
of a random variable and the random
variable times a positive constant, and -1
between the random variable and the
random variable times a negative constant.
It turns out that this is the largest and
smallest that the correlation can be. This
is due to a general fact about inner
products.

Recall that the inner product norm of v
for a given inner product is

√
⟨v, v⟩. The

Cauchy Schwartz inequality says that the
absolute value of an inner product
between v and w can be at most the
product of the norm of v times the norm of
w. Moreover, equality is only reached when
one vector is a multiple of the other.

T7 The Cauchy Schwartz inequality
For a vector space with an inner product, for any

two vectors v and w,

|⟨v, w⟩| ≤
√
⟨v, v⟩ · ⟨y, y⟩.

In addition, equality holds if and only there exists
real numbers α and β, at least one of which is
nonzero, such that αv + βw = 0.

The proof is at the end of this chapter.

UNCORRELATED
For displacement vectors, having a dot
product of zero means that the vectors are
perpendicular or orthogonal to one another.

When cor(X,Y ) = 0, call the random
variables uncorrelated.

D80 Two random variables X and Y are
uncorrelated if their correlation exists and is 0.

Correlation is about how the average
value of variables relate to each other.

Independence is stronger than
uncorrelated, as independence says that
knowing one variable has no effect on the
distribution of the other variable. That is,
X and Y independent means [X | Y ] ∼ [X].

F71 Suppose that X and Y are independent and
have a correlation. Then the correlation is 0.

Proof. Suppose that X and Y are
independent. Then

E[XY ] = E[E[XY | Y ]]

= E[Y E[X | Y ]]

= E[Y E[X]]

= E[X]E[Y ].

So their covariance is 0.

In other words, independent random
variables are uncorrelated. However, the
converse is not always true: random
variables can be uncorrelated but still
dependent.

E55 Suppose (X,Y ) is uniformly drawn from
(−1,−2), (−1, 2), (1,−1), (1, 1). Show that (X,Y )

are not independent, but are uncorrelated.
Answer. Intuitively, they are dependent because
knowing if X is −1 or 1 changes the distribution of
Y . They are uncorrelated because knowing if X is
−1 or 1 does not change the fact that the average
value of Y is 0.

Formally,

P(X = −1, Y = −1) = 0,

but

P(X = −1)P(Y = −1) = (1/2)(1/4) = 1/8

so X and Y are dependent.
For correlation:

E[X] =
1

4
[−1 +−1 + 1 + 1] = 0,

E[Y ] =
1

4
[−2 + 2 +−1 + 1] = 0,

E[XY ] =
1

4
[(−1)(−2) + (−1)(2) + (1)(−1) + (1)(1)] = 0,

so E[XY ] − E[X]E[Y ] = 0 − (0)(0) = 0. Hence
they are uncorrelated.

CHAPTER 19: CORRELATION 86



PROPERTIES OF
VARIANCE AND
COVARIANCE.
Note that inner product properties carry
over to variance and covariance. The first
is the extension of the Pythagorean
theorem to non-orthogonal vectors.

F72 For any inner product norm

||v1+· · ·+vn||2 = ||v1||2+· · ·+||vn||2+
∑
i ̸=j

⟨vi, vj⟩.

Proof. This follows from the distributive
rules

||v1 + · · ·+ vn||2 = ⟨v1 + · · ·+ vn, v1 + · · ·+ vn⟩

=

n∑
i=1

⟨vi, vi⟩+
∑
i ̸=j

⟨vi, vj⟩

=
n∑

i=1

vi
2 +

∑
i ̸=j

⟨vi, vj⟩.

In terms of variance and covariance, this
means the following.

F73 For X1, . . . , Xn random variables with finite
variance where each pair has finite covariance,

var(X1+· · ·+Xn) =

n∑
i=1

var(Xi)+2
∑
i<j

cov(Xi, Xj).

When the inner products ⟨vi, vj⟩ are 0,
this gives the Pythagorean theorem.

T8 Pythagorean Theorem
If ⟨vi, vj⟩ = 0 for all i ̸= j in {1, . . . , n}, then

||v1 + · · ·+ vn||2 = ||v1||2 + · · ·+ ||vn||2.

In Euclidean space this is often called
the distance formula. In probability
X2 = var(X), so it gives the following.

F74 If each pair in X1, . . . , Xn is uncorrelated,

then

var(X1 + · · ·+Xn) = var(X1) + · · ·+ var(Xn),

or in terms of standard deviation

SD[(X1+ · · ·+Xn)
2] = SD(X1)

2+ · · ·+SD(Xn)
2.

Remember that independent random
variables are always uncorrelated, so the
theorem applies to the sum of independent
random variables. In addition, scaling a
vector changes the standard deviation by a
factor equal to the absolute value of the
scale, which gives the following fact about
sample averages.

F75 If X1, . . . , Xn are iid distributed as X with
finite standard deviation, then

SD

(
X1 + · · ·+Xn

n

)
=

SD(X)

sqrt(n)
.

PROOF OF THE
CAUCHY SCHWARTZ
INEQUALITY.
The Cauchy Schawartz inequality says that
the absolute value of the inner product is
at most the product of the inner product
norm of two vectors. Equality holds only
when the two vectors are linearly
dependent, that is, when there exist
scalars α and β (not both zero) such that
αv + βw = 0.

In probability this says that

| cov(X,Y )| ≤ SD(X) SD(Y ),

with equality when X = αY or Y = αX for
some α.

The proof given holds for general inner
products.

Proof. If w = 0 then both sides are zero.
Equality holds and v and w are linearly
dependent.

Assume w ̸= 0. Then ⟨w,w⟩ > 0, so let

λ =
⟨v, w⟩
⟨w,w⟩

.
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By the positive definite property of the
inner product:

0 ≤ ⟨v − λw, v − λw⟩

Using linearity and symmetry allows us to
multiply out the right hand side to get

0 ≤ ⟨v, v⟩ − 2λ⟨v, w⟩+ λ2⟨w,w⟩

= ⟨v, v⟩ − 2
⟨v, w⟩2

⟨w,w⟩
+

⟨v, w⟩2⟨w,w⟩
⟨w,w⟩2

= ⟨v, v⟩ − ⟨v, w⟩2

⟨w,w⟩
⟨v, w⟩2 ≤ ⟨v, v⟩⟨w,w⟩

|⟨v, w⟩| ≤
√

⟨v, v⟩⟨w,w⟩.

If equality holds, then either w = 0 (in
which case (0)(v) + (1)(w) = 0) or
⟨v − λw, v − λw⟩ = 0. In the latter case
v − λw = 0 so v and w are also linearly
dependent.

215. AFFINE TRANSFORMS

Suppose X and Y have correlation 0.4276.
What is the correlation between 2X + 4 and
5Y + 3?

216. A BIT OF NEGATIVITY

Suppose W1 and W2 have correlation 0.3.
What is the correlation between W1 and
−W2?

217. CORRELATION OF DISCRETE
UNIFORMS

For (X,Y ) ∼ Unif({(0, 0), (2, 0), (2, 1)}), find
the correlation between X and Y .

218. CORRELATION OF
INDEPENDENT RANDOM
VARIABLES

Suppose (X,Y ) has density
fX,Y (x, y) = 2 exp(−2x − y)I(x, y ≥ 0). Find
cor(X,Y ).

219. UNDERSTANDING
FUNCTIONS

Suppose U ∼ Unif([0, 1]). Find cor(U,U2).

220. ANOTHER NEGATIVE
RESULT

For U ∼ Unif([0, 1]), find cor(U, 1− U).

221. THE PYTHAGOREAN
THEOREM

Suppose S, T,R are independent random
variables with variances of 1.1, 2.8, 0.6
respectively.
a. What is var(S + T +R)?
b. What is var(S − 2T )?

222. MORE PYTHAGORAS

Suppose that X1, . . . , Xn are independent,
and var(Xi) = 1/i. Find var(X1 + · · ·+X6).

223. SAMPLE AVERAGES

Suppose X has standard deviation 3.2.
What is the standard deviation of
(X1 + · · ·+X100)/100 if the Xi are iid X?

224. HOW MANY TO AVERAGE?
Suppose Y has standard deviation 0.4.
How big does n need to be for the standard
deviation of (Y1 + · · · + Yn)/n to be at most
0.01?
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CHAPTER 20: ADDING RANDOM
VARIABLES

T
HE KING NEEDED FOR THE

Defender of the Realm to return to
the capital. Quickly a Messenger
was sent to retrieve the Defender.

If it took time T ∼ Exp(1.2) days for the
Messenger to find the Defender, and then
independently time R ∼ Exp(1.5) for the
Defender to return to the capital, what is
the chance that it would take more than 2
days for the Defender to reach the capital?

ADDING DISCRETE
RANDOM VARIABLES
Suppose that X ∼ d4 and Y ∼ d6 are
independent rolls of two dice. What is the
chance that X + Y = 7? Well, there are four
outcomes of X and Y that equal 7:

(X,Y ) ∈ {(1, 6), (2, 5), (3, 4), (4, 3)}.

Each of the outcomes are independent,
and there are 24 total possibilities for
(X,Y ), so there is a 4 out of 24 or 1/6
chance that X + Y = 7.

Another way to think about this problem
is through the densities of the random
variables. No matter what Y is chosen, the
only way to add to 7 is for X = 7− Y . Hence

P(X + Y = 7) =
∑
y

P(X + Y = 7, Y = y)

=
∑
y

P(X = 7− y, Y = y)

=
∑
y

f(X,Y )(7− y, y)

=
∑
y

fX(7− y)fY (y).

This is a sum, which is the same as an
integral in counting measure:

P(X + Y = 7) =

∫
y
fY (y)fX(7− y) d#(y).

Of course, instead of summing over Y =
y, the problem could have been solved by

summing over X = x, yielding,

P(X + Y = 7) =

∫
y
fX(x)fY (7− x) d#(y).

It turns out that this way of calculating
probabilities involving sums of random
variables works for all densities, for all
measures, not just counting measures.
This type of sum is called a convolution.

T9 For random variables X and Y with joint
density f(X,Y )(x, y) with respect to µX × µY , the
density of S = X + Y is

fS(s) =

∫
x

f(X,Y )(x, s− x) dµX(x)

=

∫
y

f(X,Y )(s− x, y) dµY (y).

INDEPENDENT RANDOM
VARIABLES
When the random variables X and Y are
independent, then the joint density is the
product of the marginal densities so

f(X,Y )(x, y) = fX(x)fY (y).

In general, for real valued functions f
and g with respect to measure µ, the
convolution of the functions is defined as
follows.

D81 The convolution of real valued functions f
and g with respect to measure µ is

[f ∗ g](s) =
∫
x

f(x)g(s− x) dµ

Then the density of the sum of
independent random variables is just the
convolution of the random variables’
densities.

F76 If X and Y are independent random variables
with densities fX and fY with respect to measure
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µ, then the density of S = X + Y is fX ∗ fY .

SOLVING THE STORY

In the story, the first time is T ∼ Exp(1.2),
with density fT (t) = 1.2 exp(−1.2t)I(t ≥ 0).
Similarly, R ∼ Exp(1.5), so
fR(r) = 1.5 exp(−1.5)I(r ≥ 0). Therefore, the
convolution

[fT (t) ∗ fR(r)](s)

is the integral∫
t
g1(t)I(t ≥ 0)g2(s− t)I(s− t ≥ 0) dt

where

g1(t) = 1.2 exp(−1.2t)

g2(s− t) = 1.5 exp(−1.5(s− t))

∫
t
g1(t)I(t ≥ 0)g2(t)I(s− t ≥ 0) dt.

This integral was written to emphasize the
role of indicator functions in the individual
densities. Recall that the product of
indicator functions is the logical and of the
arguments. So

I(t ≥ 0)I(s− t ≥ 0) = I(0 ≤ t ≤ s).

That makes the convolution∫
t
1.8 exp(−1.5s+ 0.3t)I(0 ≤ t ≤ s) dt.

When s < 0 then I(0 ≤ t ≤ s) = 0 for all t
and the integral is 0.

When s ≥ 0, then the indicator can be
used to set the limits of the integral, giving

[fT (t) ∗ fR(r)](s) =
∫ s

t=0
1.8 exp(−1.5s+ 0.3t) dt

= 6 exp(−1.5s+ 0.3t)|s0
= 6[exp(−1.2s)− exp(−1.5s)].

Therefore, the density of T +R at s is

6[exp(−1.2s)− exp(−1.5s)]I(s ≥ 0).

This density looks like this:

This looks roughly like the shape of a
gamma distribution, but it is actually
different.

To finish the problem, this density is
integrated from 2 to infinity.

P(T +R ≥ 2)

=

∫
s≥2

6[exp(−1.2s)− exp(−1.5s)]I(s ≥ 0) ds

= 6

[
exp(−1.2s)

−1.2
− exp(−1.5s)

−1.5

]∣∣∣∣∞
2

≈ 0.2544 .

Let’s do a discrete example where two
discrete uniform random variables are
added together. In this case, the trickiest
part of the convolution is keeping track of
the indicator functions in the densities.

E56 Suppose X ∼ d4 and Y ∼ d10 are
independent. What is the density of X + Y ?
Answer. This is

fX+Y (s)

=

∫
i

fX(i)fY (s− i) d#

=
∑
i

fX(i)fY (s− i)

=
∑
i

I(i ∈ {1, 2, 3, 4})
4

· I(s− i ∈ {1, 2, . . . , 10})
10
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Note that if s− i = 7, then i = s− 7. So

fX+Y (s)

=
∑
i

I(i ∈ {1, 2, 3, 4}, i ∈ {s− 1, . . . , s− 10})
40

=
∑
i

I(i ∈ {1, 2, 3, 4} ∩ {s− 10, . . . , s− 1}
40

Since each entry in the sum is either 1/40 or
0/40, the sum will be the number of integer i that
lie in {1, 2, 3, 4} ∩ {s − 10, s − 9, . . . , s − 1}. Or
equivalently, i ∈ Z such that
max(1, s− 10) ≤ i ≤ min(4, s− 1).

Break it down by cases.

case max(1, s− 10) min(4, s− 1)

s < 2 1 s− 1 < 1

s < 5 1 s− 1

5 ≤ s ≤ 11 1 4
11 < s ≤ 14 s− 10 4
s > 14 s− 10 > 4 4

From the table, the density is:

fX+Y (s) = (s− 1) · I(s ∈ {2, 3, 4}) +
4 · I(s ∈ {5, . . . , 11}) +
(14− s) · I(s ∈ {12, 13, 14}).

USING POLYNOMIALS
TO ADD DISCRETE
RANDOM VARIABLES
A faster way to calculate densities like in
the previous example is to use polynomial
multiplication. For instance, consider the
generating function associated with A ∼ d3:

gfA(x) = (1/3)x+ (1/3)x2 + (1/3)x3.

There is an xi term for each i such that
P(A = i) > 0, and the coefficient of the term
is P(A = i). Because A ∈ {1, 2, 3}, this
generating function is a degree 3
polynomial.

For B ∼ d4, the polynomial is

gfY (x) = (1/4)x+ (1/4)x2 + (1/4)x3 + (1/4)x4.

Now let’s multiply these two polynomials
together. After simplifying, gfA(x) gfB(x)

will be

1

12
x2 +

2

12
x3 +

3

12
x4 +

3

12
x5 +

2

12
x6 +

1

12
x7

This polynomial is the one associated
with S = A+B! To see why, consider the x3

term. This term comes from multiplying
the following terms of gfA and gfB together:

1

3
x1 · 1

4
x2 +

1

3
x2 · 1

4
x1.

Because the way that the xi terms are
created,

csx
s =

∑
i,j:i+j=s

aix
ibjx

j ,

which exactly gives the polynomial for the
sum.

Now note that this polynomial can be
viewed as an expected value:

gfX(x) =
∑
i

P(X = i)xi = E[xX ].

D82 The generating function of a random
variable X is

gfX(x) = E[xX ].

F77 If X and Y are independent, then

gfX+Y (x) = gfX(x) · gfY (x).

Proof. Since X and Y are independent,
then so are xX and xY . Hence

E[xX+Y ] = E[xXxY ] = E[xX ]E[xY ],

which completes the proof.

You can find the generating function for
continuous random variables as well.

E57 Suppose T ∼ Exp(λ). What is gfT (x)?
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Answer. Use the formula for expectation of a
function of a random variable, and assuming x > 0,

gfT (x) = E[xT ]

=

∫
s∈R

xsλ exp(−λs)I(s ≥ 0) ds

=

∫
s≥0

exp(s ln(x)) exp(−λs) ds

=

∫
s≥0

λ exp(−(λ− ln(x))s) ds

= − λ

λ− ln(x)
exp(−(λ− ln(x)))|∞0

=
λ

λ− ln(x)
,

as long as ln(x) < λ, so x < eλ.

An important fact is that if two random
variables have the same moment
generating function for any interval of
nonzero length, then they have the same
distribution.

F78 If for a < b, gfX(x) = gfY (x) for all x ∈ [a, b],
then X ∼ Y .

E58 Prove using generating functions that for
A1, A2 are iid Exp(λ), the density of A1 +A2 is

1

2
λ2w exp(−λw)I(w ≥ 0).

Answer. Because A1 and A2 are independent,

gfA1+A2
(x) = gfA1

(x) gfA2
(x) =

(
λ

λ− t

)2

,

for x ∈ [0, exp(λ)).
Suppose W has density

fW (w) = λ2w exp(−λw)/2I(w ≥ 0). Then

gfW (x) = E[xW ]

=

∫
w∈R

xwλ2w exp(−λw)/2I(w ≥ 0) dw

=

∫
w∈R

xwλ2w exp(−λw)/2I(w ≥ 0) dw

=

∫
w≥0

exp(w ln(x))λ2w exp(−λw)/2 dw

= λ2

∫
w≥0

w

[
exp(−(λ− ln(x))w)

−(λ− ln(x))

]′
dw

Recall that integration by parts allows us to slide
the derivative from one part over to the other part

using∫ b

a

f(w)g′(w) dw = f(w)g(w)|ba−
∫ b

a

f ′(w)g(w) dw.

In our case, f(w) = w so f ′(w) = 1. Also our g(w)
is an exponential with a negative leading exponent
for λ ≥ ln(x). Hence limw→∞ g(w) = 0.. Also,
f(0) = 0, so

gfW (x) = −λ2

∫
w≥0

exp(−(λ− ln(x))w)

−(λ− ln(x))
dw

= λ2 exp(−(λ− ln(x))w)

−(λ− ln(x))2

∣∣∣∣∞
0

=
λ2

(λ− ln(x))2
,

which is exactly the generating function of A1 + A2.
Hence W ∼ A1 +A2, and the density is correct.

225. ADDING RANDOM
VARIABLES

Suppose (X,Y ) ∼ Unif({(1, 2), (1, 3), (2, 2)}).
What is the density of X + Y ?

226. MORE ADDITION

Suppose (X,Y ) are uniform over
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)}. What is
the density of X + Y ?

227. ADDING INDEPENDENT DICE

Suppose A ∼ d4 and B ∼ d4 are
independent. Use the convolution of the
densities of A and B to find the density of
A+B.

228. MORE DICE

If X ∼ d3 and Y ∼ d6 are independent, find
the density of X + Y using the convolution
method.

229. ADDING CONTINUOUS
RANDOM VARIABLES

Suppose A ∼ Unif([0, 1]) and B ∼ Exp(1).
What is the density of A+B?

230. MORE CONTINUOUS
ADDITION

Suppose A ∼ Unif([0, 2]) and B ∼ Exp(1.2).
What is the density of A+B?
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231. GENERATING FUNCTION OF
A POISSON

Suppose X ∼ Pois(µ). Prove that the
generating function of X is exp(−µ(1− x)).

232. ADDING POISSONS

Suppose X1 ∼ Pois(µ1) and X2 ∼ Pois(µ2)
are independent. Prove that
X1 +X2 ∼ Pois(µ1 + µ2).

233. WOLFRAM ALPHA TO THE
RESCUE

Suppose X1, . . . , X10 are iid d4. Then using
Wolfram Alpha to perform the polynomial
multiplications, find the probability that
X1 + · · ·+X10 = 23.

234. ADDING LOTS OF DICE

Suppose X1, . . . , X10 are iid d6. Then using
Wolfram Alpha to perform the polynomial
multiplications, find the probability that
the sum of the Xi are at least 55.
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CHAPTER 21: THE CENTRAL LIMIT
THEOREM

T
AXES FOR THE YEAR CAME

from five different regions
of the kingdom. If the taxes from
each region are independent and

modeled as Unif([0, 4000]), is it possible to
estimate the chance that the taxes
collected are at least 14,000?

THE MOMENT
GENERATING FUNCTION
The generating function allows us to prove
things about the sum of random variables
much more quickly than the convolution
method. By modifying this function
slightly, there is another unexpected
benefit.

D83 The moment generating function of a
random variable X is

mgfX(t) = E[exp(tX)].

The moment generating function has the
same information as the generating
function for s > 0). This is because

gfX(s) = mgfX(ln(s)).

By definition, mgfX(0) = 1, but for t ̸= 0,
there is no guarantee that this expected
value is finite.

Why do this? Well, the first reason is
that another word for the expected value of
a random variable is the first moment.

D84 For an integrable random variable X , the
first moment (or often just moment) of X is
E[X].

Similarly, if Xi is integrable, then the ith
moment of X is just E[Xi].

Now consider again mgfX(t) = E[exp(tX)].
Suppose the derivative of the mgf with
respect to t exists. If the derivative could

be swapped with the expectation operator,
that would give the following:

d

dt
E[exp(tX)] = E

[
d exp(tX)

dt

]
= E[X exp(tX)].

Now, swapping derivatives and means is
not always valid, but it turns out to be
valid for a moment generating function
that is finite for a positive length interval
that contains t = 0.

Now plug in 0 for t in E[X exp(tX)]. That
leaves us with E[X]. In other words, the
first moment of X is the first derivative of
mgfX(t) evaluated at t = 0.

By taking more derivatives of t, it is
possible to obtain higher moments of X.

F79 Suppose mgfX(t) exists for a positive length
interval. Then for a positive integer i,

di

dti
mgfX(t)

∣∣∣∣
t=0

= E[Xi].

An analytic function is one for which the
Taylor series expansion converges to the
function. In particular, if mgfX(t) is
analytic around 0, then

mgfX(t) = 1 + E[X]t+
E[X2]t2

2!
+ · · ·

That earns this function the moment
generating function name.

SHIFTING AND SCALING
Consider how shifting and scaling affects
the moment generating function.

F80 If X has moment generating function
mgfX(t), then for real a and b,

mgfaX+b(t) = exp(tb)mgfX(at).

Proof. Note that

mgfaX+b(t) = E[exp((aX + b)t)]

= E[exp(bt) exp(atX)]

= exp(bt)mgfX(at).
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Recall, that standardizing random
variables means shifting down by the
expected value and dividing by the
standard deviation. This changes the
moment generating function as follows.

F81 If X has mean µ and standard deviation σ,
then for

S =
X − µ

σ
,

mgfS(t) = exp(−tµ)mgfX(t/σ).

THE MGF AND THE SUM
OF RANDOM VARIABLES
Suppose that S1, S2, . . . are random
variables that have already been
standardized so that they have mean 0
and standard deviation 1. So E[Si] = 0 and
E[S2

i ] = var(Si) = 1.
Then if mgfSi

(t) is analytic, the first few
terms are known, so

mgfSi
(t) = 1 +

t2

2
+

E[S3
i ]t

3

3!
+

E[S4
i ]t

4

4!
+ · · · .

Then

E(S1 + · · ·+ Sn) = E(S1) + · · ·+ E(Sn) = 0,

and

var(S1 + · · ·+Sn) = var(S1) + · · ·+var(Sn) = n.

So then
W =

S1 + · · ·+ Sn√
n

has mean 0 and standard deviation 1.
Then the moment generating function of

W is

mgfW (t) = mgfS1/
√
n(t) · · ·mgfSn/

√
n(t)

=
(
mgfSi/

√
n(t)

)n
= mgfSn

(t/
√
n)n

In infinite series form:

mgfW (t) =

[
1 +

t2

2n
+

E[S3
i ]t

3

3!n3/2
+

E[S4
i ]t

4

4!n2
+ · · ·

]n
.

If mgfSi
(t) exists, then the limit of the

right hand side as n → ∞ is

lim
n→∞

mgfW (t) = exp(t2/2).

THE NORMAL DISTRIBUTION

Is there a random variable whose mgf is
exp(t2/2)? Yes! This distribution is called
the normal distribution.

D85 Say that Z has a standard normal
distribution if it has density

fZ(x) =
1√
τ
exp(−x2/2).

Write Z ∼ N(0, 1).

F82 If Z ∼ N(0, 1) then mgfZ(t) = exp(t2/2).

Proof. This can be calculated as

mgfZ(t) = E[exp(tZ)]

=

∫
z∈R

exp(tz)
1√
τ
exp(−z2/2) dz

=

∫
z∈R

1√
τ
exp(−(z − t)2/2) exp(t2/2) dz

= exp(t2/2)

∫
s∈R

1√
τ
exp(−s2/2) ds

= exp(t2/2),

where s = z − t so dz = ds.

This leads us to the Central Limit
Theorem, which says that the standardized
sum of random variables with finite
variance approaches that of a normal
random variable.

T10 The Central Limit Theorem
Suppose that X1, X2, . . . is an iid sequence of

random variables with finite mean µ and variance
σ2. Then for all numbers a,

lim
n→∞

P
(
X1 + · · ·+Xn − nµ

σ
√
n

≤ a

)
= P(Z ≤ a),

where Z ∼ N(0, 1).

The cdf of a standard normal
Most advanced modern calculators can find P(Z ≤
a) for any a. In R, the command pnorm(a) finds
this value.
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SOLVING THE STORY

Recall for a standard uniform,
U ∼ Unif([0, 1]), that E[U ] = 1/2 and
var(U) = 1/12. So for

W = 4000U ∼ Unif([0, 4000]),

the mean is E[W ] = (1/2)(4000) = 2000 and
the variance is var(W ) = 40002(1/12). Let
W1, . . . ,W5 be iid W .

Armed with this information, one can
standardize the sum inside the probability
function using W1 +W2 + · · ·+W5 = S:

p = P(W1 + · · ·+W5 ≥ 24000)

= P(S − 5 · 2000 ≥ 24000− 5 · 2000)

= P

(
S − 5 · 2000√
5 · 40002/12

≥ 14000− 5 · 2000√
5 · 40002/12

)
≈ P (Z ≥ 1.549193) .

Using 1 - pnorm(1.549193) in R gives
p ≈ 0.06066 .

THE HALF INTEGER CORRECTION

For discrete random variables, the half
integer correction can help the Central
Limit Theorem be more accurate.

D86 When a random variable S must be an
integer, for i ∈ Z,

P(S ≤ i) = P(S ≤ i+ 1/2),

and
P(S ≥ i) = P(S ≥ i− 1/2).

This is called the half integer correction.

E59 Suppose D1, . . . , D10 are iid d6. Estimate
P(D1 + · · · + D10 ≤ 30) using the Central Limit
Theorem.
Answer. For D ∼ d6, E[D] = (1 + 6)/2 = 3.5 and
var(D) = 61.25. Using the half-integer correction

and D1 + · · ·+D10 = S gives

p = P(D1 + · · ·+D10 ≤ 30)

= P(S ≤ 30.5)

= P(S − 10 · 3.5 ≥ 30.5− 10 · 3.5)

= P
(
S − 10 · 3.5√
10 · 61.25

≤ 30.5− 10 · 3.5√
10 · 61.25

)
≈ P

(
Z ≤ 30.5− 10 · 3.5√

10 · 61.25

)
= P(Z ≤ −0.1818).

This is about 0.4278 .

235. CLT FOR EXPONENTIALS

Suppose T1, T2, . . . , T18 are iid Exp(3.4).
Estimate P(T1 + · · · + T18 ≥ 6) using the
Central Limit Theorem.

236. CLT FOR UNIFORMS

Suppose A1, A2, . . . , A18 are iid Unif([0, 2]).
Estimate P(A1 + · · · + A18 ≥ 24.3) using the
Central Limit Theorem.

237. CLT FOR GEOMETRICS

Suppose T1, T2, . . . , T18 are iid Geo(0.2).
Estimate P(T1 + · · · + T18 ≥ 100) using the
Central Limit Theorem and the half-integer
correction.

238. CLT FOR DICE

Suppose D1, D2, . . . , D18 are iid d8.
Estimate P(D1 + · · · + D18 ≤ 78) using the
Central Limit Theorem and the half-integer
correction.

239. ANOTHER EXPONENTIAL
CLT
Suppose T1, . . . , T10 are iid Exp(1.4).
Estimate P(T1 + · · ·+ T10 ≥ 9).

240. CLT FOR UNKNOWN
DISTRIBUTIONS

If S1, . . . , S15 have mean 15.2 and variance
24.3, then approximately what is P(S1+S15 >
240)?

241. FACTORY ACCIDENTS

There are fifteen different subsections
within a factory. Each subsection typically
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has a number of accidents (independently)
that are modeled as uniform from 0 up to
20. Estimate with the Central Limit
Theorem and the half-integer correction
the probability that the number of
accidents is at least 160.

242. CUSTOMER ARRIVALS

The time between customer arrivals is
modeled as an iid sequence of random
variables with density 4w2 exp(−2w)I(w ≥ 0).
Estimate the probability that the time the
fifth customer arrives is at least 8.2.

243. CHECKING THE CLT
Suppose A1, . . . , A10 are iid Exp(2.1).
a. Estimate P(A1 + · · · + A10) ≥ 5 using the
CLT.
b. Find P(A1 + · · · + A10) ≥ 5 using the fact
that the sum of 10 iid exponentials is
gamma distributed with parameters 10 and
2.1.

244. PRESCRIPTIONS

A pharmacy has 1000 customers, each of
which has a 3% chance of picking up a
prescription on a given day. Using the
Central Limit Theorem, estimate the
probability that at least 40 customers will
pick up a prescription today.
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CHAPTER 22: NORMAL RANDOM
VARIABLES

T
THE RANGER LOOKED TOWARD the
distant mountain. A simple model
for the height of the mountain
was normal with mean 10000 feet

and standard deviation 2000 feet. What is
the chance with this model that the
mountain’s height is at least 13000 feet?

SHIFTING AND SCALING
STANDARD NORMALS
Standard normal random variables have
mean 0 and variance 1. If these random
variables are stretched and scaled, then
the result is a another normal random
variable, but with different mean and
variance. The mean becomes the shift, and
the variance is the square of the scaling.

D87 Let Z be a standard normal. For real
numbers µ and σ, say that µ + σZ is a normal
random variable with mean µ and variance σ2.
Write µ+ σZ ∼ N(µ, σ2).

Scaling random variables
Other scaled random variables include
exponentials and continuous uniforms over
intervals. For A a standard exponential, A/λ is an
exponential with rate λ. For U a standard uniform
over [0, 1], a+ bU ∼ Unif([a, a+ b]).

Recall that for Z ∼ N(0, 1),

f(z) =
1√
τ
exp(−z2/2)

mgfZ(t) = exp(t2/2).

The following then comes from the rules
for densities and mgf obtained from shifted
and scaled random variables.

F83 For W ∼ N(µ, σ2), the density and mgf are as
follows.

fW (w) =
1

σ
√
τ
exp(−(x− µ)2/(2σ2))

mgfW (t) = exp(tµ) exp(t2σ2/2).

SOLVING THE STORY

A standard normal can be multiplied by
2000 and added to 10000 to give a normal
with mean 10000 and standard deviation
2000. Hence if H is the mountain height:

P(H ≥ 13000) = P(10000 + 2000Z ≥ 13000)

= P(2000Z ≥ 3000)

= P(Z ≥ 1.5).

Using 1 - pnorm(1.5) in R gives an
approximation for the probability of
0.06680 .

ADDING INDEPENDENT
NORMALS
What happens when you add independent
normals? The result is another normal
random variable!

F84 Suppose Z1 ∼ N(µ1, σ
2
1) and Z2 ∼ N(µ2, σ

2
1)

are independent. Then

Z1 + Z2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

Proof. Use the moment generating function
to prove this. Recall that for independent
random variable, the moment generating
function of the sum equals the product of
the mgfs.

mgfZ1+Z2
(t) = mgfZ1

(t)mgfZ2
(t)

= exp(tµ1) exp(t
2σ2

1/2)) exp(tµ2) exp(t
2σ2

2/2)

= exp(t(µ1 + µ2)) exp(t
2(σ2

1 + σ2
2)/2).

This proves the result.

This can be extended via induction to
adding any number of independent normal
random variables.

F85 If (W1, . . . ,Wn) are independent normal
random variables where Wi ∼ N(µi, σ

2
i ), then

W1 + · · ·+Wn ∼ N(µ1 + · · ·+ µn, σ
2
1 + · · ·+ σ2

n).
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MULTIVARIATE
NORMALS
If (Z1, Z2, . . . , Zn) are iid standard normals,
then the marginal distributions are
standard normals.

By the results of the previous section,
any linear combination of standard
normals is also a normal. For instance,

W1 = 3Z1 − 4Z2 + Z3 + 4

will be normal. The parameters will be the
mean and the variance.

W1 ∼ N(4, 32 + (−4)2 + 12) ∼ N(4, 26).

If we create n normals in this fashion
from n iid standard normals, then the
result is called a multivariate normal.
Typically this is written using matrix
notation as

W = AZ + µ,

where µ = (µ1, . . . , µn)
T is a column vector

of length µ, A is a real valued n by n
matrix, and Z = (Z1, . . . , Zn)

T are iid
standard normal random variables. For aij
equal to the entry in the ith row and jth
column of A, this means

Wi =

n∑
j=1

aijZj + µi

For k ̸= ℓ, Zk and Zℓ are independent,
and have covariance 0. So the only
contributions between Wi and Wj involve
terms of the form cov(aikZi, ajkZj) = aikajk.
That makes

cov(Wi,Wj) =
∑
k

aikajk

All of these summations can be done
simultaneously for all i and j through
matrix multiplication:

σ = AAT .

The notation AT denotes the transpose of
A. Transposition switches rows and
column of the matrix. Letting aTij denote
the entries in the transpose,

aij = aTji.

Here the capital Greek letter Σ is used to
denote the covariance matrix of the
multivariate distribution.

D88 If X = (X1, . . . , Xn) is a a multivariate real
valued random variable, then the n by n matrix
Σij = cov(Xi, Xj) is called the covariance matrix
of X .

D89 If A is a real valued n by n matrix, and µ is a
real valued n by 1 matrix, and Z = (Z1, . . . , Zn)

T

consists of iid standard normal random variables,
then

W = AZ + µ,

is a multivariate normal random variable (aka
multinormal) with mean µ and covariance matrix
Σ = AAT . Write

W ∼ Multinormal(µ,Σ).

DENSITY OF A
MULTIVARIATE NORMAL
The joint density of Z1, Z2, . . . , Zn will be

τ−n/2 exp(−(z1 + · · ·+ zn)
2/2),

and so for the density of the multivariate,
it is necessary to understand how scaling
and shifting move things.

The shifting part is easier. If W = X + µ
for a multivariate distribution, then

fW (w) = fX(w − µ).

For scaling in one dimension, recall that
for T = aS,

fT (t) = fS(t/a)/a.

The |a| appears because of the way
differential elements get stretched by a
factor of |a|. To fit into a differential
element of width |dt|, you must start with a
differential element of width |ds|/|a|.

With multivariate scaling, a similar effect
happens. For

Y = AX,

where X and Y are n dimensional vectors
and A is an n× n matrix, the stretching of a
differential element is by a factor called the
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determinant of A. To compensate for that,
the density must be divided by the
determinant of A. This leads to the
following density for multivariate normal,
presented without formal proof.

F86 For W ∼ Multinormal(µ,Σ), the density of
W with n components is fW (w), which is

1

τn/2
· 1

|det(Σ)|1/2
exp

(
− (w − µ)TΣ−1(w − µ)

2

)

245. SHIFTING AND SCALING
NORMALS

Suppose W ∼ N(34, 20). Then write P(W ≤
28) in terms of cdfZ where Z ∼ N(0, 1).

246. MORE SHIFTING AND
SCALING NORMALS

If R ∼ N(−4.2, 5.6), write P(R ≥ −2) in terms
of cdfZ where Z is a standard normal
random variable.

247. ADDING INDEPENDENT
NORMALS

If Z1 ∼ N(2.4, 5.2) and Z2 ∼ N(−1.2, 5.2) are
independent, what is the distribution of Z1+
Z2?

248. ADDING THREE
INDEPENDENT NORMALS

If Z1 ∼ N(1.9, 10.2), Z2 ∼ N(2.1, 13.2) and Z3 ∼
N(3.1, 11.2), what is the distribution of Z1 +
Z2 − Z3?

249. MULTIVARIATE SCALING
AND SHIFTING

Suppose that (Z1, Z2) are iid standard
normal random variables, and

W1 = 3Z1 − Z2 + 3

W2 = −2Z1 + Z2 − 4.

What is the distribution of (W1,W2)?

250. FINDING MULTIVARIATE
NORMAL PARAMETERS

Suppose that X1 = Z1 + Z2 + 4 and X2 =
Z1−Z2+4 where Z1 and Z2 are independent

standard normal random variables. What
is the distribution of (X1, X2)?
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CHAPTER 23: BAYES’ RULE FOR
DENSITIES

A
LCHEMY IS TRICKY UNDER THE best
of conditions. The Alchemist had
developed a new recipe, but the
same recipe (even when followed to

the best of the Alchemist’s ability) did not
always result in a potent potion. The
Alchemist decided to call the probability
that a potion worked p, and originally
(because of a lack of information) modeled
p as Unif([0, 1]). The Alchemist then ran an
experiment, making six of the potions from
the new recipe and trying each in turn.
Given the result that there were two
successes and four failures, what is the
new distribution of p given this
information?

DIFFERENTIALS AND
BAYES
Recall that the probability a random
variable W falls into a differential interval
dw is

P(W ∈ dw) = fW (w) dw,

where dw stands for both the differential
inverval and the length of the interval. The
function fW (w) is the density of W .
Alternatively, the density can be viewed as
a type of derivative:

P(W ∈ dw)

dw
= fW (w).

Conditioning on information about
differential intervals is a bit different.
Suppose that one is given the information
that Y ∈ dy. That says that Y is arbitrarily
close to y. Hence from a conditioning point
of view, this is the same information as if
Y = y. Consider using this idea with Bayes’
rule.

If differentials could be cancelled just
like regular variables, then the regular

Bayes’ rule gives

p(dx, dy) = P(X ∈ dx | Y ∈ dy)

= P(Y ∈ dy | X ∈ dx)
P(X ∈ dx)

P(Y ∈ dy)

= fY |X=x(y) dy ·
fX(x) dx

fY (y) dy

= fY |X=x(y)
fX(x)

fY (y)
dx,

and dividing both sides by dx gives

fX|Y=y(x) = fY |X=x(y)
fX(x)

fY (y)

Note that fY |X=x(y) and fX(x) depends
on x, while fY (y) does not. This means
that the normalizing constant fY (y) can be
found by integrating the other terms. This
gives Bayes’ rule for densities.

T11 Bayes’ Rule for Densities
Suppose X and Y are real valued random

variables with density fX and fY respectively. Let
y be a number such that fY (y) > 0. Then

fX|Y=y(x) =
fY |X=x(y)fX(x)∫

w
fY |X=w(y)fX(w) dw

.

The density of X is called the prior
density, while the density of the random
variable X given the condition that Y = y,
is called the posterior density.

Note that the denominator on the right
hand side only depends on y after w is
integrated out. And y is a constant on the
left hand side of the equation. So another
way to write Bayes’ Rule for densities is as
a proportion, using the ∝ symbol to hide
the constant of proportionality.

Some examples of the ∝ symbol:

3x2 ∝ x2

x2 ∝ 3x2

6
√
x ∝

√
x

For Bayes’s rule, the following holds.
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F87 For X and Y with densities fX and fx
respectively, and y a number such that fY (y) > 0,
it holds that

fX|Y=y(x) ∝ fY |X=x(y)fX(x).

In words: the posterior density of X
conditioned on Y is proportional to the
prior density of X times the density of Y
conditioned on X.

With this equation, you can then find the
constant of proportionality by integrating
C times the right hand side and for x ∈ R
and then setting the result equal to 1.

SOLVING THE STORY

In the Alchemist’s story, p is a random
variable that is uniform over [0, 1]. Hence it
has density fp(a) = I(a ∈ [0, 1]). Let N
denote the number of successful
experiments for the 10 trials. Then the goal
is to find

fp|N=4(a) ∝ fN |p=a(4)fp(a)

Here [N | p] ∼ Bin(10, p). So

fN |p=a(4) =

(
10

4

)
a4(1− a)10−4 ∝ a4(1− a)6.

Multiplying by fp(a) gives

fN |p=a(i)fp(a) ∝ a4(1− a)6I(a ∈ [0, 1]).

This is an unnormalized density. To
normalize, integrate for all a:∫

a
a4(1− a)6I(a ∈ [0, 1]) da =

∫ 1

0
a4(1− a)6 da

= 1/2310.

That last calculation comes from a neat
little fact.

F88 For i and j integers,∫ 1

0

xi(1− x)j dx =
i!j!

(i+ j + 1)!

Dividing by 1/2310 is the same as
multiplying by 2310, so that makes the
posterior density:

fp|N=4(a) = 2310a4(1− a)6I(a ∈ [0, 1]).

THE BETA
DISTRIBUTION
The type of density that shows up in the
posterior is called the beta distribution.

D90 Suppose X has density

fX(x) ∝ xa−1(1− x)b−1I(x ∈ [0, 1]),

where a, b > 0. Then say that X has the beta
distribution with parameters a and b. Write
X ∼ Beta(a, b).

When a = b = 1, the beta distribution is
the same as a standard uniform over [0, 1],
so it can be thought of as a generalization
of this distribution.

D91 The normalizing constant of the beta
distribution is called the beta function, and is
denoted by a capital Greek letter beta:

B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx.

Greek and Roman letters
The capital Greek letter beta and a capital Roman
letter B look identical.

There is a simple relationship between
the beta function and the gamma function.

F89 For a, b > 0,

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

Beta functions and binomial coefficients
This has the form of the inverse of a binomial
coefficient. That is because the binomial coefficient
multiplies the binomial density and B(a, b) divides
it.

251. ARCHYTAS MEDICAL

Archytas Medical Group believes a new
drug has p chance of working, where p is a
random variable with density
fp(a) ∼ Beta(2, 3). They test the drug on five
animals, three of whom show that the drug
works. What is the posterior distribution
on p given this information?
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252. UPDATING RATE OF AN
EXPONENTIAL

A modeler believes the prior distribution of
λ is Exp(0.01) and has a model of [X | λ] =
Exp(λ). Given X = 4.3, what is the posterior
distribution of λ?

253. TOOTHPASTE TROUBLES

A factory produces 980 tubes of toothpaste
in a day. The chance that any tube is
defective is 0.001.
a. What is the chance that no tubes of
toothpaste are defective?
b. What is the chance that at least two
tubes of toothpaste are defective?

254. LARGE AND SMALL ORDERS

About 2% of the time, customers at a local
restaurant have a large order than takes
ten minutes or more. The restaurant has
40 customers in a typical lunch hour.
a. What is the chance that none of the
customers is a large order?
b. What is the chance that there is at least
one large order?

255. RONCO SURVEY GROUP

Ronco Survey Group knows that the
chance of someone answering their phone
and doing a survey is 4%. How many
people do they have to call in order to
make sure that the probability that they
get at least 10 survey takers is at least 70

256. SOME ROCKET SCIENCE

An aerospace firm is developing several
different varieties of rocket fuel mixtures.
If each mixture has a 10% chance of
meeting specifications, how many mixtures
must they try in order to have at least an
80% chance that at least five mixtures are
successful? (Feel free to use R in solving
this problem.)

257. DIMER MEDICINE

Dimer Medicine creates 3 types of drugs
for a particular illness. The first is effective
in 50% of patients, the second in 37%, and
the third in 5%. Let A denote the event

that the drug is effective and X ∈ {1, 2, 3}
the drug that is given to the patient.
a. If a patient is equally likely to receive any
of the three drugs, find the probability that
both drug 1 is administered and it is
effective.
b. If a patient is equally likely to receive any
of the three drugs, what is the probability
that the drug is effective on their illness?
Hint: the event A is the disjoint union of
three pieces.

A = (A∩{X = 1})∪(A∩{X = 2})∪(A∩{X = 3}).

c. If the drug is effective for the patient,
what is the probability that the drug was of
the third type.

258. TORRENT MUSIC

Torrent Music Co. signs artists that fall
into high, middle, and low selling
categories. High artists sell roughly 80% of
the music, middle 15%, and low 5%. Only
2% of artists are high selling, 47% are
middle selling, and 51% are low selling.
a. Given a sold piece of music, what is the
chance that it belongs to a high selling
artist?
b. What is the chance it belongs to a middle
selling artist?
c. What is the chance it belongs to a low
selling artist?

259. THE ASSEMBLY LINE

A consultant models the probability p that
an item is defective on an assembly line as
being uniform over the set
{0, 0.01, 0.02, 0.03, 0.04, 0.05}. After testing
100 items that are believed to be
independently defective or not defective, 4
are found to be defective. What is the
distribution of p conditioned on this
information?

260. INSPECTOR QUINN

Inspector Quinn believes the chance of
product failure is equally likely to be any of
{0, 0.3, 0.5, 0.7, 1}. After testing 8 items, 3
are found to fail. What are the
probabilities for the five different
possibilities given this information?

CHAPTER 23: BAYES’ RULE FOR DENSITIES103



261. RUSH HOUR

In a particular county during rush hour,
80% of cars contain one occupant, 10%
contain 2, 5% contain 3, and 5% contains
4 or more.

Any car containing two or more
occupants has a 90% chance of using the
carpool lane, and 1% of cars containing
only one occupant cheat and use the
carpool lane.

Suppose a car is in the carpool lane.
Given this information, what is the
probability that the car contains 1, 2, 3, or
4+ occupants?

262. UNIFORM BAYES

Suppose that A is uniform from 1 to 4,
and then B conditioned on A is uniform
from 1 to A. Given B = 2, what is the
distribution of A?
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CHAPTER 24: THE MULTINOMIAL
DISTRIBUTION

E
AGERLY THE ALCHEMIST

watched the five potions on the
table. For each potion, there were
three outcomes. There was a 10%

chance the potion would hurt the drinker,
a 20% chance that it would do nothing,
and a 70% chance the potion would help
the drinker. If (N1, N2, N3) represented the
number of hurt, nothing, and help potions
respectively, what would the covariance
matrix of these random variables be?

MORE THAN TWO
OUTCOMES
In the Bernoulli process, each trial had
only two outcomes, failure or success.
What if more than two outcomes are
allowed?

Suppose that there are m different
outcomes possible. In the Story, there are
three outcomes for the different types of
potions. There were five potions being
brewed. That means that 11231, 33212,
and 33333 are all possible outcomes.

Altogether there are 35 different ways for
the five potions to turn out. That can be
simplified if instead of caring about exactly
which potion was which type, the only
question of interest is how many of each
type of potion was created. In that case, if
there were five trials, and the result was

1, 1, 2, 3, 1

then the count of results would be the
vector

(3, 1, 1),

indicating that there were 3 type 1 potions,
1, type 2, and 1 type 3. Similarly, 33212
gives the vector (1, 2, 2), and 33333 gives
(0, 0, 5).

Let Ni denote the number of potions of
type i created. Then because there were
five potions to start N1 + N2 + N3 = 5.
Moreover, N1, N2, and N3 are all binomially

distributed. In particular, N1 ∼ Bin(5, 0.1),
since there are five potions (trials), with a
10% chance of being type 1 (success).

Similarly, N2 ∼ Bin(5, 0.2) and
N3 ∼ Bin(5, 0.7). So these random variables
are not identically distributed. They are
also not independent, since again
N1 + N2 + N3 = 5. Knowing N1 and N2

allows the calculation of N3, so they
cannot all be independent.

The name given to the joint distribution
of the Ni is multinomial.

D92 Suppose for i ∈ {1, . . . ,m}, Ni ∼ Bin(n, pi),
and N1 + · · · + Nm = n. Then say that
(N1, . . . , Nm) have a multinomial distribution with
parameters (n, p1, p2, . . . , pm). Write

(N1, . . . , Nm) ∼ Multinomial(n, p1, . . . , pm).

Recall that the set of n-tuples where
each coordinate is in {1, . . . ,m} can be
written as

{1, . . . ,m}n.

So for instance, 1132 ∈ {1, 2, 3}4.

Counting outcomes
For a set of outcomes of trials
(w1, . . . , wn) ∈ {1, . . . ,m}n, let

f count(w1, . . . , wn)

=
(∑

I(wj = 1), . . . ,
∑

I(wj = m)
)
.

The next fact uses this notation to
describe exactly what the multinomial
random variables are counting.

F90 Suppose W1, . . . ,Wn are iid where P(Wj =

i) = pi for all j ∈ {1, . . . , n} and i ∈ {1, . . . , n},
and p1 + · · ·+ pm = 1. Then

fcount(W1, . . . ,Wn) ∼ Multinomial(n, p1, . . . , pn).

Proof. Let fcount(W1, . . . ,Wn) = (N1, . . . , Nm).
For every i and j, consider the indicator

random variable I(Wj = i). This is a
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Bernoulli distributed random variable with
parameter pi. Also, I(W1 = i), . . . , I(Wn, i)
are independent, and

Ni =
n∑

j=1

I(Wj = i) ∼ Bin(n, pi)

because Ni is the sum of independent
Bernoulli random variables.

In addition,

m∑
i=1

n∑
j=1

I(Wj = i) =

n∑
j=1

m∑
i=1

I(Wj = i) =

n∑
j=1

1 = n.

Hence the resulting distribution is
multinomial.

DENSITY OF THE
MULTINOMIAL
DISTRIBUTION
To understand the density of the
multinomial distribution, first a bit of
combinatorics must be introduced.

D93 Consider sequences of length n consisting of
the numbers {1, . . . ,m}. The number of sequences
where each number i ∈ {1, . . . ,m} appears exactly
ni times is called the multinomial coefficient, and is
written (

n

n1, n2, . . . , nm

)

In terms of the fcount function, the
multinomial coefficients count the number
of inputs to the function that results in the
count n1, . . . , nm. That is,(

n

n1, . . . , nm

)
is equal to the number of (w1, . . . , wn) in
{1, . . . ,m}n such that

fcount(w1, . . . , wn) = (n1, . . . , nm).

It is the multinomial coefficient because
of the following fact about multinomials.

F91 For m and n positive integers, (x1+ · · ·+xm)n

is equal to∑
n1+n2+···+nm=n

(
n

n1, n2, . . . nm

)
xn1
1 xn2

2 · · ·xnm
m .

This fact follows directly from the
defintion and the distributive law. For
instance, consider (x1 + x2 + x3)

4, which is
equal to

(x1+x2+x3)(x1+x2+x3)(x1+x2+x3)(x1+x2+x3)

To multiply this out, choose one term
from the first factor, one from the second,
one from the third, one from the fourth,
and finally one from the fifth. This is
exactly like our random variables
W1, . . . ,W4, where Wi ∈ {1, 2, 3} for all i.

For instance, if the choice of terms from
each factor was x1, x2, x1, x2, then
multiplying gives x21x

2
2. Because

multiplication of the xi is commutative, the
number of ways of getting x21x

2
2 equals the

number of ways of choosing the first term
twice, the second term twice, and the third
term zero times from among the four
products.

Now use these coefficients to write down
the density of multinomial random
variables.

F92 For
(N1, . . . , Nm) ∼ Multinomial(n, p1, . . . , pm), the
density

f(N1,...,Nm)(n1, . . . , nm)

equals (
n

n1, n2, . . . , nm

)
pn1
1 pn2

2 · · · pn3
3 .

Proof. Consider an outcome of the trials
(w1, . . . , wn) ∈ {1, . . . ,m}n where

fcount(w1, . . . , wn) = (n1, . . . , nm).

In our problem P(Wi = wi) = pwi. For all
pj > 0, there is also a useful product form
of this expression:

P(Wi = wi) =

m∏
j=1

p
I(wi=j)
j .
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When wi = j, I(wi = j) = 1 and p
I(wi=j)
j = pj.

when wi ̸= j, pI(wi=j)
j = p0j = 1. Taking the

product over all j picks out pwi.
Then

p = P((W1, . . . ,Wn) = (w1, . . . , wn))

=
n∏

i=1

P(Wi = wi)

=
n∏

i=1

m∏
j=1

p
I(wi=j)
j

=
m∏
j=1

n∏
i=1

p
I(wi=j)
j

=
m∏
j=1

p
∑n

i=1 I(wi=j)
j

=

m∏
j=1

p
nj

j

So then the question is, how many
(w1, . . . , wn) are there such that
(N1, . . . , Nm) = (n1, . . . , nm). And that is
exactly what the multinomial coeffient
gives. Let A be the set of (w1, . . . , wn) such
that

fcount(w1, . . . , wn) = (n1, . . . , nm).

Then

#(A) =

(
n

n1, n2, . . . , nm

)
.

Moreover,

p = P((N1, . . . , Nm) = (n1, . . . , nm))

=
∑

(w1,...,wn)∈A

P((W1, . . . ,Wn) = (w1, . . . , wn))

=
∑

(w1,...,wn)∈A

m∏
j=1

p
nj

j

=

(
n

n1, n2, . . . , nm

) m∏
j=1

p
nj

j .

So how are multinomial coefficients
actually calculated? Use the following
formula.

F93 For n1, . . . , nm nonnegative integers that sum
to n, (

n

n1, n2, . . . , nm

)
=

n!

n1!n2! · · ·nm!
.

The proof is a bit tricky to write formally,
so here just an informal derivation will be
given.

Think of the multinomial as an m stage
experiment. At the first stage, n1 spots are
chosen from the n available to have Wj = 1.
So that can be done in(

n

n1

)
=

n!

n1!(n− n1)!

ways. At the second stage, choose n2 spots
from the remaining n − n1 spots. This can
be done in

ways.
The number of ways to choose in the

first two stages of the experiment are then(
n

n1

)(
n− n1

n2

)
=

n!

n1!(n− n1)!

(n− n1)!

n2!(n− n1 − n2)!
,

and two of the factorials cancel to give(
n

n1

)(
n− n1

n2

)
=

n!

n1!n2!(n− n1 − n2)!
,

Then multiplying by(
n− n1 − n2

n3

)
gives

n!

n1!n2!n3!(n− n1 − n2 − n3)!
,

Carrying this through to all the stages of
the experiment gives (after cancellation)

n!

n1!n2! · · ·nm!(n− n1 − · · · − nm)!
,

however, n−n1−n2−· · ·−nm = 0, and 0! = 1,
so it disappears from the product.

E60 If
(N1, N2, N3) ∼ Multinomial(5, 0.1, 0.2, 0.7), then
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what is the chance that (N1, N2, N3) = (0, 2, 3)?

Answer. Using our formula, this is

5!

0!2!3!
(0.1)0(0.2)2(0.7)3,

or 0.1372 .

MOMENTS OF
MULTINOMIAL RANDOM
VARIABLES
The mean of each component of the
multinomial follows directly from its
marginal distribution, which is binomial.
Recall that the mean of a binomial is the
product of the two parameters.

F94 For
(N1, . . . , Nm) ∼ Multinomial(n, p1, . . . , pm),

E[(N1, . . . , Nm)] = (np1, np2, . . . , npm).

A similar situation holds for variance.

F95 For
(N1, . . . , Nm) ∼ Multinomial(n, p1, . . . , pm), for
each i ∈ {1, . . . ,m},

var(Ni) = npi(1− pi).

COVARIANCE OF MULTINOMIAL

Covariance is a bit trickier, since the
components of the multinomial are not
independent. If Xi is high, that leaves
fewer spots to be taken by type j, so Xj

should be lower on average. How low is
given by the following fact.

F96 For i ̸= j, cov(Xi, Xj) = −npipj .

Proof. Recall that

cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ]

= E[XiXj ]− npinpj .

Say Xi is known. That gives n−Xi spots
for Xj. Moreover, because these spots are

conditioned to not draw Wk = i, there is a
pj/(1− pi) chance that Wk = j.

Use the Fundamental Theorem of
Probability to say

E[XiXj ] = E[E[XiXj | Xi]]

= E[XiE[Xj | Xi]]

= E[Xi(n−Xi)pj/(1− pi)]

=
pj

1− pi
E[nXi −X2

i ]

=
pj

1− pi
[n2pi − var(Xi) + E[Xi]

2]

=
pj

1− pi
[n2pi − npi(1− pi) + [npi]

2]

=
pj

1− pi
[n2pi(1− pi)− npi(1− pi)]

= −npipj + n2pipj .

Hence

cov(Xi, Xj) = −npipj + n2pipj − n2pipj ,

and simplifying finishes the proof.

263. PROBABILITIES FOR
MULTINOMIALS

If (X1, X2, X3, X4) ∼
Multinomial(10, 0.3, 0.5, 0.1, 0.1), what is the
chance that (X1, X2, X3, X4) equals
(3, 5, 1, 1)?

264. MORE PROBABILITIES OF
MULTINOMIALS

If (A1, A2, A3) ∼ Multinomial(7, 0.3, 0.3, 0.4),
what is the chance that
(A1, A2, A3) = (4, 2, 1)?

265. MEANS OF MULTINOMIALS

If (X1, X2, X3, X4) ∼
Multinomial(10, 0.3, 0.5, 0.1, 0.1), what is
E[(X1, X2, X3, X4)]?

266. MULTINOMIALS MEANS

If (A1, A2, A3) ∼ Multinomial(7, 0.3, 0.3, 0.4),
what is E[(A1, A2, A3)]?

267. MULTINOMIAL COVARIANCE

If (X1, X2, X3, X4) ∼
Multinomial(10, 0.3, 0.5, 0.1, 0.1), what is the
covariance matrix for (X1, X2, X3, X4)?
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268. MORE COVARIANCES OF
MULTINOMIALS

If (A1, A2, A3) ∼ Multinomial(7, 0.3, 0.3, 0.4),
what is the covariance matrix for
(A1, A2, A3)?
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CHAPTER 25: TAIL INEQUALITIES

F
OR THE COMING BATTLE, THE King
expected the Vassal to send on
average 100 archers to bolster his
army. The King wondered, then,

given the average to be 100, what could
the highest possible chance that the Vassal
would send at least 300 archers?

MARKOV’S INEQUALITY
The goal of Markov’s inequality is to bound
the probability that a random variable is
larger than a certain amount.

To start with, suppose that X is a
random variable that takes on values
either 0 or a, where a is a positive real
number.

Let p = P(X = a), so P(X = 0) = 1 − p.
Then how large can p be if E[X] = 2.1?

From the formula for expected value,

E[X] = (0)(1− p) + ap = 2.1,

so it seems like p = 2.1/a. Generalizing this
example show that it is possible to have

P(X ≥ a) =
E[X]

a
.

Is is possible for the chance the random
variable is at least a to be larger than that?
Consider the random variable Y where

P(Y = a) = p

P(Y = −1) = 1− p,

and E[Y ] = 2.1. Then

E[Y ] = (−1)(1− p) + ap = 2.1,

and
P(Y ≥ a) = p =

2.1 + 1

a+ 1
,

which for positive a is bigger than 2.1/a.
Okay, but in that example, the random

variable Y had positive chance of being
negative. So now only consider
nonnegative random variables like X. This
random variable X has p = E[X]/a, but is it
possible to make p bigger than this?

The answer is no, this is in fact the
biggest that p can get for any nonnegative

integrable random variable. This result is
called Markov’s inequality. To make sure
the variable is nonnegative, consider what
happens with |X|

T12 Markov’s Inequality
For an integrable random variable X , and a > 0,

P(|X| ≥ a) ≤ E[|X|]
a

.

Events such as X ≥ a (and X ≤ b) are
called tail events. This is because if you
shade in those regions in a density, it can
look a bit like a tail on a pet. Of course,
since the density must go to zero either as
you move to the right or to to the left,
densities (unlike most pets) have two tails!

Call X ≥ a the right tail or upper tail, and
X ≤ b the lower tail or left tail of the
distribution.

Markov’s inequality gives a bound on the
probability of the upper tail that is
proportional to the expected value, and
inversely proportional to the distance from
the tail to the origin.

This is similar to playing on a see-saw: if
you move too much mass (probability) out
towards the end of a see-saw, it must
overbalance. So to keep the see-saw in
balance, you need to stay close enough to
the other end.

For such an important theorem, the
proof of Markov’s inequality is surprisingly
simple. Break the random variable X into
two pieces, the upper tail and the rest of
the distribution, using indicator functions.

Proof. Consider the functions

f(x) = x

g(x) = aI(x ≥ a).

For all x ≥ 0, it holds that g(x) ≤ f(x).
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a

0 a

f

g

That is because

f(x) = xI(x < a) + xI(x ≥ a))

xI(x < a) ≥ 0

xI(x ≥ a) ≥ aI(x ≥ a).

This can be used to lower bound E[|X|].

E[|X|] = E[f(|X|)]
≥ E[g(|X|)]
= E[aI(|X| ≥ a)]

= aP(|X| ≥ a).

Dividing through by a finishes the
proof.

SOLVING THE STORY

In the Story, let A denote the number of
archers sent by the Vassal. The King
knows that E[A] = 100, and wants an upper
bound on P(A ≥ 300). Since A ≥ 0, |A| = A.
From Markov’s inequality, this is

P(A ≥ 300) ≤ E(A)
300

=
100

300
=

1

3
.

So the King upper bounds the probability
by 0.3334 .

Rounding upper bounds
For this problem, the last digit of the probability
was rounded up. This is because the goal was to
find an upper bound on the value. If the goal had
been to find a lower bound, then the value would
have been rounded down.

CHEBYSHEV’S
INEQUALITY
Markov’s inequality seems so simple, but
is the basis of many other important tail
inequalities in probability. One such is
now known as Chebyshev’s inequality.

Teacher and Student
Pafnuty Chebyshev was actually Andrey Markov’s
teacher. Chebyshev was the first to create what is
now called Markov’s inequality, so sometimes
Markov’s inequality is called the first Chebyshev
inequality and Chebyshev’s inequality is the second
Chebyshev inequality.

This inequality gives an upper bound
which is usually (although not always)
better than the straight Markov’s
inequality. Moreover, it gives a bound on
the sum of the upper and lower tails. And
it works on random variables that are both
positive and negative.

The idea is to apply Markov’s inequality
to the new random variable (X − E(X))2.
Recall that the mean of this variable is the
variance of X.

F97 Chebyshev’s inequality
For X an integrable random variable with finite

standard deviation, and a > 0,

P(|X − E[X]| ≥ a) ≤ var(X)

a2
.

Proof. By Markov’s inequality,

P((X − E[X])2 ≥ a2) ≤ E[(X − E[X])2

a2

=
var(X)

a2
.

Then using ((X−E[X])2 ≥ a2) ↔ (|X−E[X]| ≥
a) finishes the proof.

E61 Suppose E[T ] = 15 and var(T ) = 25. Upper
bound P(T ≥ 25) using Chebyshev’s inequality.
Answer. Note that (a ≥ b) → (|a| ≥ b), so

(T ≥ 25) = (T − 15 ≥ 10) → (|T − 15| ≥ 10),

so

P(T ≥ 25) = P(|T − 15| ≥ 10)

≤ var(T )

102

= 25/100,

so 25% is an upper bound on the tail probability.

You can also phrase Chebyshev’s
inequality in terms of how many standard
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deviations away from the mean the
random variable is.

F98 Suppose X has a finite standard deviation.
Then for k ≥ 1,

P(|X − E[X]| ≥ k SD(X)) ≤ 1/k2.

Proof. Plug a = k SD(X) into Chebyshev’s
inequality.

SAMPLE AVERAGES
Recall that the sample average of the first
n of X1, X2, . . . iid X where X is an
integrable random variable is

Sn =
X1 + · · ·+Xn

n
.

The Strong Law of Large Numbers
indicates that with probability 1,
Sn → E[X]. But it does not tell us how
quickly the convergence occurs.

Unfortunately, Markov’s inequality does
not improve for sample averages as n
increases. E[Sn] = E[X], so

P(Sn ≥ a) ≤ E[Sn]/a = E[X]/a.

On the other hand, if var(X) < ∞, then
Chebyshev’s inequality does improve with
n.

F99 Let X1, X2, . . . iid X with E[X] = µ,
SD(X) = σ, Sn = (X1 + · · ·+Xn)/n, then

P
(∣∣∣∣Sn − µ

σ

∣∣∣∣ ≥ k

)
≤ 1

nk2
.

Proof. Recall

var(Sn) =
var(X1 + · · ·+Xn)

n2

=
var(X1) + · · ·+ var(Xn)

n2

=
n var(X1)

n2

=
var(X1)

n
.

Hence

P
(∣∣∣∣Sn − µ

σ

∣∣∣∣ ≥ k

)
= P (|Sn − µ| ≥ kσ)

≤ σ2

n(kσ)2

=
1

nk2
.

E62 Let A1, A2, . . . be iid A, and
Sn = (A1 + · · ·+ An)/n. For A with mean 3.2 and
standard deviation 1.6, how large does n have to be
before P((A1 + · · · + An)/n > 4) ≤ 0.1 (using
Chebyshev)?
Answer. Let Sn = (A1 + · · · + An)/n. First let’s
standardize Sn recalling that it has mean 3.2 and
standard deviation 1.6/ sqrt(n). Then

P(Sn > 4) = P
(∣∣∣∣ Sn − 3.2

1.6/ sqrt(n)

∣∣∣∣ > 4− 3.2

1.6/ sqrt(n)

)
= P

(∣∣∣∣ Sn − 3.2

1.6/ sqrt(n)

∣∣∣∣ > sqrt(n)

2

)
At this point, invoke Chebyshev’s inequality to

say

P(Sn > 4) ≤
(

2

sqrt(n)

)2

=
4

n
.

Setting 4/n ≤ 0.1 gives n ≥ 40 .

RELATIVE ERROR

Now, usually the goal of using a sample
average is to estimate the mean value of a
random variable. Often the relative error is
required.

D94 The relative error in estimate â for a is∣∣∣∣ âa − 1

∣∣∣∣
For instance, if the true answer is 3, and

the estimate is 3.3, then there is |(3.3/3) −
1| = 10% relative error in the estimate.

Now consider bounding the probability
that the relative error in the sample
average as an estimate of the mean is
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larger than ϵ. Using |ab| = |a| · |b| gives

P
(∣∣∣∣Sn

µ
− 1

∣∣∣∣ ≥ ϵ

)
= P (|Sn − µ| ≥ ϵ|µ|)

≤ σ2/n

[ϵ|µ|]2

=
1

n
· ϵ−2σ

2

µ2
.

This last factor is unitless, and is given
the name relative variance. The square
root is called the relative standard
deviation or coefficient of variation.

D95 For a random variable with nonzero mean
and finite variance, the relative variance is

varrel(X) =
var(X)

E[X]2
=

E[X2]

E[X]2
− 1.

The relative standard deviation")‘ also known as
‘r term("coefficient of variation is

SDrel(X) =
SD(X)

|E[X]|
=
√
varrel(X).

So Chebyshev’s inequality says that to
get a nontrivial bound on the probability
that the relative error of the sample
deviation is large, the number of samples
must be inversely proportional to the
square of the relative error and
proportional to the relative variance. That
is,

n = Θ

(
ϵ−2 · var(X)

E[X]2

)
A look at how the Central Limit Theorem
behaves gives a similar result.

This idea is often called the Monte Carlo
error bound, and represents a hard limit on
how well sample averages can estimate
their mean.

269. MARKOV’S INEQUALITY

Suppose T ≥ 0 has E[T ] = 2.3. Upper bound
P(T ≥ 6).

270. MORE MARKOV’S
INEQUALITY

If E[X] ≤ 10, give an upper bound on P(X ≥
50).

271. CHEBYSHEV’S INEQUALITY

Suppose R has mean 12.2 and standard
deviation 4.3. Use Chebyshev’s inequality
to bound P(R ≤ 4).

272. MORE CHEBYSHEV’S
INEQUALITY

Suppose A has mean 8.6 and standard
deviation 1.2.
a. Use Markov’s inequality to upper bound
P(A ≥ 13).
b. Use Chebyshev’s inequality to bound
P(A ≥ 13).

273. CHEBYSHEV VIA STANDARD
DEVIATION

What is the largest chance possible that a
random variable is at least 3 standard
deviations away from its mean?

274. MORE CHEBYSHEV VIA
STANDARD DEVIATION

What is the largest chance possible that a
random variable is at least 2.3 standard
deviations away from its mean?

275. SAMPLE AVERAGES AND
CHEBYSHEV

Suppose N1, N2, . . . are iid N , where
E[N ] = 3.2 and SD(N) = 6.2. Let
Sn = (N1 + · · ·+Nn)/n. How large must n be
in order for Chebyshev to upper bound
P(Sn < 0) by 0.2?

276. MORE SAMPLE AVERAGES
AND CHEBYSHEV

Suppose that T1, T2, . . . are iid Exp(2.1). How
large must n be for Chebyshev to
guarantee that

P
(
T1 + · · ·+ Tn

n
> 0.5

)
≤ 0.01?

277. CONSTRUCTION WOES

A building is believed to require 0.8 years
on average to complete, with a standard
deviation of 0.5 years. Give the best bound
(either Markov or Chebyshev) for the
following.
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a. The building takes at least a year to
build.
b. The building takes at least two years to
build.

278. THE VACCINE

A vaccine is expected to be ready on
average in 13 months, with a standard
deviation of 2 months. Give an upper
bound on the chance that the vaccine is
not ready 16 months from now.
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CHAPTER 26: CHERNOFF INEQUALITIES

H
OURGLASSES WERE ALL THE

rage at the market
this year. The Merchant modeled
the demand among the nobility as

D ∼ Pois(112.2). How can P(D ≥ 150) be
upper bounded using the moment
generating function of D?

THE CHERNOFF
INEQUALITY
Recall that our tail inequalities begin with
Markov’s inequality for a > 0:

P(|X| ≥ a) ≤ E[|X|]
a

.

By applying Markov’s inequality to (X −
E[X])2, Chebyshev’s inequality is obtained:

P(|X − E[X]| ≥ a) ≤ var(X)

a2
.

Markov’s inequality assumes only that X
is integrable and Chebyshev’s inequality
assumes that X has a finite standard
deviation. A Chernoff inequality makes the
greatest assumption: here X must have a
moment generating function that is finite
for some t ̸= 0.

F100 Chernoff’s inequality
For a ∈ R, and random variable X , for any t >

0,

P(X ≥ a) ≤ mgfX(t)

exp(ta)
,

and for t < 0,

P(X ≤ a) ≤ mgfX(t)

exp(ta)
,

Proof. For t > 0, x 7→ exp(tx) is an
increasing function. Hence

P(X ≥ a) = P(exp(tX) ≥ exp(ta)) ≤ E[exp(tX)]

exp(ta)

by Markov’s inequality. Similarly, using
t < 0, the map x 7→ exp(tx) is a decreasing
function, making

P(X ≤ a) = P(exp(tX) ≥ exp(ta))

≤ E[exp(tX)]

exp(ta)
.

Rubin’s inequality?
Chernoff’s inequality continues our tradition of not
naming tail inequalities after their inventors. This
particular inequality was actually first created by
Herman Rubin but was popularized by Chernoff’s
work.

Unlike Markov and Chebyshev
inequalities, Chernoff’s inequalities
actually contain an infinite number of
choices! They hold for any t where the
moment generating function is finite, so to
get the best inequality, it is necessary to
choose the value of t that gives the best
result.

SOLVING THE STORY

To solve the story with Chernoff’s
inequality, the moment generating
function of a Poisson is needed.

F101 For X ∼ Pois(µ),

mgfX(t) = exp(µ(exp(t)− 1)).
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Proof. The calculation of the mgf can be
done as follows. First recall the density of
a Poisson random variable.

fX(i) = exp(−µ)
µi

i!
I(i ∈ {0, 1, 2, . . .}).

For any number t,

mgfX(t) = E[exp(tX)]

=

∫
i
exp(ti)fX(i) d#

=
∑

i∈{0,1,2,...}

exp(ti) exp(−µ)
µi

i!

= exp(−µ)
∑

i∈{0,1,2,...}

exp(ti)
µi

i!

= exp(−µ)
∑

i∈{0,1,2,...}

[exp(t)µ]i

i!

= exp(−µ) exp(exp(t)µ)

= exp(µ(exp(t)− 1)).

So Chernoff’s inequality gives that

P(X ≥ a) ≤ f(t, µ, a) =
exp(µ(exp(t)− 1))

exp(ta)
.

To get the best bound, choose t to
minimize f(t, µ, a). Since f > 0, use the
following trick:

argmaxt f(t, µ, a) = argmaxt ln(f(t, µ, a)).

So

argmaxt f(t, µ, a) = argmaxt µ(exp(t)− 1)− ta.

The derivative with respect to t gives

[µ(exp(t)− 1)− ta]′ = µ exp(t)− a,

which is positive if exp(t) > a/µ and
negative for exp(t) < a/µ. Hence

argmaxt f(t, µ, a) = ln(a/µ).

For the story of the Merchant, a = 140,
µ = 112.2, exp(t) = 1.247772, and

P(D ≥ 140) ≤ exp(112.2(1.247772− 1))

1.247772140
,

which is at most 0.04116 .

This is much better bound that either
Markov’s inequality which gives
112.2/140 = 0.8014 . . . or Chebyshev’s
inequality, which gives
112.2/(140− 112.2)2 = 0.145 . . ..

Now that the t has been determined, it
can be used without rederiving it each
time for the Poisson.

F102 For X ≥ Pois(µ), both P(X ≥ a) and
P(X ≤ a) are at most

exp(a− µ)

(a/µ)a
.

SUMS OF RANDOM
VARIABLES
Chernoff’s bound works especially well
with sums of random variables. Recall that
if S = S1 + · · · + Sn, where the Si are iid,
then

mgfS(t) = mgfS1
(t)mgfS2

(t) · · ·mgfSn
(t)

=
[
mgfS1

(t)
]n

.

Hence for t > 0,

P(S ≥ a) ≤ mgfS1
(t)n exp(−ta),

and for t < 0,

P(S ≤ a) ≤ mgfS1
(t)n exp(−ta),

E63 For X ∼ Bin(5, 0.2), use Chernoff’s bound to
bound P(X ≥ 2).
Answer. Recall that a binomial random variable is
the sum of iid Bernoulli random variables. That is,
X = B1 + · · · + Bn where Bi ∼ Bern(p). Hence
mgfB(t) = mgfB1

(t)n, and

mgfBi
(t) = e0(1− p) + et(p) = 1− p(1− et).

Hence

P(X ≥ 2) ≤ [1− 0.2(1− et)]5

exp(2t)

=

(
1− 0.2(1− et)

exp((2/5)t)

)5

= (0.8 exp(−(2/5)t) + 0.2 exp((3/5)t))
5

= g(s)5,

where s = et and g(s) = 0.8s−2/5 + 0.2s3/5.
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Since g(s) ≥ 0, both g(s) and g(s)5 have the
same argument maximum. What value of s
minimizes g(s)?

[0.8s−2/5 + 0.2s3/5]′ = −0.32s−7/5 + 0.12s−2/5

= s−7/5[−0.32 + 0.12s].

That means that the derivative is negative when
s < 0.32/0.12 = 8/3, positive when s > 8/3, and
zero when s = 8/3, making g(8/3)5 the maximum
value. Plugging in s = 8/3 gives a bound of
16/27 ≤ 0.5926 .

SAMPLE AVERAGES

The advantage of Chernoff’s bound for
sums extends to sample averages. For
S = S1 + · · · + Sn where the Si are iid, the
sample average S/n has

P(S/n ≥ a) = P(S ≥ an)

≤
mgfS1

(t)n

exp(tan)

=

[
mgfS1

(t)

exp(ta)

]n
In other words, if S1 has a Chernoff

bound γ on its tail, then the tail of the
sample average of n iid copies of S1 is γn.

279. CHERNOFF FOR POISSONS

For X ∼ Pois(21.3), use Chernoff’s
inequality to bound P(X ≥ 30).

280. MORE CHERNOFF FOR
POISSONS

For N ∼ Pois(10), use Chernoff’s inequality
to bound P(X ≤ 4).

281. CHERNOFF FOR GAMMAS

Using t = 0.47 in Chernoff’s bound, give an
upper bound for R ∼ Gamma(13, 1.4) of
P(R ≥ 14).

282. MORE CHERNOFF FOR
GAMMAS

Using t = 0.8 in Chernoff’s bound, give an
upper bound for T15 ∼ Gamma(15, 2.3) of
P(T15 ≥ 10).

283. CHERNOFF GIVEN THE MGF

Suppose that X has
mgfX(0.2)/ exp(4(0.2)) ≤ 0.6, and X1, . . . , X10

are iid X. What is a bound on

P
(
X1 + · · ·+X10

10
≥ 4

)
?

284. MORE CHERNOFF GIVEN
THE MGF

Suppose that Y has

mgfY (1.3)/ exp(6.1(1.3)) ≤ 0.45,

and Y1, . . . , Y8 are iid Y . What is a bound
on

P
(
Y1 + · · ·+ Y8

8
≥ 6.1

)
?

285. CHERNOFF FOR UNIFORMS

For U1, . . . , Un iid Unif([0, 1]), consider

P ((U1 + · · ·+ U10) ≥ 6).

a. Use Wolfram Alpha to find the value of t
that minimizes the Chernoff bound for this
probability.
b. Find the best Chernoff bound for this
probability.

286. CHERNOFF FOR DISCRETE
UNIFORMS

Let X ∼ Unif({2, 3, 5}). For X1, . . . , X20 iid X,
consider P(X1 + · · ·+Xn ≥ 75).
a. Use Wolfram Alpha to find the value of t
that minimizes the Chernoff bound for this
probability.
b. Find the best Chernoff bound for this
probability.
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CHAPTER 27: THE HYPERGEOMETRIC
DISTRIBUTION

I
N THE BAG OF LOOT THERE WERE

five gold pieces and seven silver
pieces. The adventurers decided to
split the twelve pieces among their

three person party by allowing each
member to take four pieces from the bag.
What is the chance that the first member
to draw took two gold and two silver?

What is the chance that the last person
to draw was left with two gold and two
silver?

THE HYPERGEOMETRIC
DISTRIBUTION
Recall that if B1, B2, . . . are iid Bern(p), then
call this a Bernoulli process, and
{i : Bi = 1} is a Bernoulli point process
with parameter p.

This gives rise to the binomial
distribution:

B1 + · · ·+Bn ∼ Bin(n, p),

the geometric distribution

inf{i : B1 + · · ·+Bi = 1} ∼ Geo(p),

and the negative binomial distribution

inf{i : B1 + · · ·+Bi = r} ∼ NegBin(r, p),

Numbers of Bernoulli points
Because it arises so frequently, throughout this
chapter let

Nk = B1 + · · ·+Bk.

It also gives rise to one more distribution
not discussed earlier. This distribution
looks at the number of points in the first k
positions given the number of points in the
first n positions.

D96 For a Bernoulli process (of any p ∈ (0, 1)) with
n ∈ {1, 2, . . .}, k ∈ {1, . . . , n} and ℓ ∈ {1, . . . , n},
consider the number of points in the first k
positions conditioned on the number of points in

the first n positions. This has a hypergeometric
distribution. For

Nr = B1 + · · ·+Br,

write

[Nk | Nn = ℓ] ∼ HyperGeo(n, k, ℓ).

For H ∼ HyperGeo(n, k, ℓ), the density of
H can be found by using the conditional
probability formula.

F103 For H ∼ HyperGeo(n, k, ℓ),

P(H = i) =

(
k
i

)(
n−k
ℓ−i

)(
n
ℓ

) .

Proof. Let i ∈ {1, . . . ,min(k, ℓ)}. Then

P(H = i) = P(Nk = i | Nn = ℓ)

=
P(Nk = i,Nn = ℓ)

P(Nn = ℓ)

=
P(Nk = i,Nn −Nk = ℓ− i)

P(Nn = ℓ)

=
P(Nk = i)P(Nn −Nk = ℓ− i)

P(Nn = ℓ)

=

(
k
i

)(
n−k
ℓ−i

)(
n
ℓ

) ,

where pi(1 − p)n−i appeared in both the
numerator and the denominator, and so
was canceled.

This calculation did not rely on
B1, . . . , Bk being the points considered, any
set {a1, . . . , ak} that containing k positions
in {1, . . . , n} would work. This gives a
generalization of the last fact.

F104 Let S = {1, . . . , n} and A ⊆ S with #(S) =

n and #(A) = k. Then for any ℓ ∈ {1, . . . , n},[∑
a∈A

Ba |
∑
i∈S

Bi = ℓ

]
∼ HyperGeo(n, k, ℓ)

The proof is similar to the last fact.
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SOLVING THE STORY

Consider the bag of twelve coins. Visualize
the inside of the bag as a Bernoulli
process, where a 1 means the coin is gold,
and a 0 means that the coin is silver.

The fact that out of the twelve coins, 5 of
the coins are gold and 7 are silver, means
that

B1 + · · ·+B12 = 5.

So if the first four coins are drawn out of
the bag, then

[N4 | N12 = 10] ∼ HyperGeo(12, 4, 10).

That means

P(N4 = 2 | N12 = 10) =

(
4
2

)(
7
2

)(
12
4

) ,

which simplifies to 14/33 and is about
0.4242 .

The story of the bag also asks about the
probability that for the last four coins
drawn from the bag, what is the chance
that two gold are selected. This is still

P(B9 + · · ·+B12 | B1 + · · ·+B12 = 5),

which has the same distribution as before.
Hence it is still 0.4242 . Remember,
whether looking at the first four coins or
the last four coins picked, the distribution
will be exactly the same!

UNIFORM POINTS
A hypergeometric random variable gives us
the distribution of the sum of the points
over k positions when the points over n
positions is known to be ℓ. But what about
the locations of those points?

For B = {i : Bi = 1}, and S = {1, . . . , n}
this is the set B ∩ S. Again, condition on
#(B) = ℓ. Then what is the distribution of
B?

Well, each Bernoulli looks exactly like
another, so intuitively each subset of S of
size ℓ should be equally likely to equal B.
This intuition is correct!

F105 Let S = {1, . . . , n}, B1, B2, . . . iid Bern(p)

for p ∈ (0, 1), and B = {i : Bi = 1}. Then

[B | #(B) = ℓ] ∼ Unif ({b ⊆ S : #(b) = ℓ)

Proof. Let b be a subset of S with ℓ
elements. Then

P(B = b | #(B) = ℓ) =
P(B = b,#(B) = ℓ)

P(#(B) = ℓ)

=
P(B = b)

P(#(B) = ℓ)

=
pℓ(1− p)n−ℓ(
n
ℓ

)
pℓ(1− pn−ℓ)

= 1/

(
n

ℓ

)
.

There are
(
n
ℓ

)
such sets b, so the

distribution must be uniform over these
sets.

Note that p cancels out as with the
hypergeometric, so this fact holds
regardless of the value of p! Once the
number of points is fixed, the position of
those points is uniform over possible
positions, whether originally each
Bernoulli was likely or unlikely to occur.

Also, conditioned on B1 + · · · + Bn, each
Bi is still a Bernoulli random variable with
the same mean.

F106 For n ∈ {1, 2, . . .}, ℓ ∈ {0, . . . , n}, and i ∈
{1, . . . , n},

[Bi | B1 + · · ·+Bn = ℓ] ∼ Bern
(
ℓ

n

)
.

Proof. This follows from the
hypergeometric distribution with k = 1:

P(Bi = 1 | Nn = ℓ) =

(
1
1

)(
n−1
ℓ−1

)(
n
ℓ

)
=

(n− 1)!

(n− ℓ)!(ℓ− 1)!
· ℓ!(n− ℓ)!

n!

=
ℓ

n
.

Of course, even if they are identically
distribution conditioned on
B1 + · · ·+Bn = ℓ, they are not independent.
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To see that, consider the covariance
between Bi and Bj for i ̸= j.

F107 For n ∈ {1, 2, . . .}, ℓ ∈ {0, . . . , n}, and i ∈
{1, . . . , n}, for i ̸= j, let sℓ be the event that B1 +

· · ·+Bn = ℓ. Then

cov([Bi | sℓ], [Bj | sℓ]) =
ℓ(ℓ− 1)

n(n− 1)
− ℓ2

n2
.

Proof. Because Bi and Bj are 0 or 1, so is
BiBj, so this is also a Bernoulli random
variable! Moreover,

P(BiBj = 1 | sℓ) = P(Bi +Bj = 2 | sℓ)

=

(
2
2

)(
n−2
ℓ−2

)(
n
ℓ

)
=

(n− 2)!

(ℓ− 2)!(n− ℓ)!
· ℓ!(n− ℓ)!

n!

=
ℓ(ℓ− 1)

n(n− 1)

So

c = cov([Bi | sℓ], [Bj | sℓ])
= E[BiBj | sℓ]− E[Bi | sℓ]E[Bj | sℓ]

=
ℓ(ℓ− 1)

n(n− 1)
− ℓ2

n2
.

Hence the covariance is slightly negative,
which is expected given that when Bi = 1,
that slightly lowers the chance that Bj = 1
given that the sum of the Bernoullis is
fixed.

MOMENTS OF
HYPERGEOMETRICS
First consider the first moment of the
hypergeometric, that is, the mean.

F108 For H ∼ HyperGeo(n, k, ℓ),

E[H] =
kℓ

n
.

Proof.

E[H] = E[B1 + · · ·+Bk | Nn = ℓ]

= E[B1 | Nn = ℓ] + · · ·+ E[Bk | Nn = ℓ]

= kE[B1 | Nn = ℓ]

= kℓ/n

as desired.

Using our variance formula for sums
gives the following.

F109 For H ∼ HyperGeo(n, k, ℓ),

var(H) =
kℓ

n

[
(n− k)(n− ℓ)

n(n− 1)

]

Proof. Start with

var(H) = var(Nk | Nn = ℓ)

= var(B1 + · · ·+Bk | Nn = ℓ).

The variance of sums formula says that
var(H) is

var(H) = s1 + s2,

where

s1 =

k∑
i=1

var(Bi | Nn = ℓ)

and

s2 =
∑
i ̸=j

cov([Bi | Nn = ℓ], [Bj | Nn = ℓ]).

Consider s1, the sum of variances first.
Each Bi conditional on Nn = ℓ is a
Bernoulli random variable with mean ℓ/n.
Hence the variance of one is

ℓ

n

(
1− ℓ

n

)
,

and the variance of the sum of k identically
distributed random variables is

s1 = k
ℓ

n

(
1− ℓ

n

)
.

Similarly,

cov([Bi | sℓ], [Bj | sℓ]) =
ℓ(ℓ− 1)

n(n− 1)
− ℓ2

n2

=
ℓ

n

[
ℓ− 1

n− 1
− ℓ

n

]
.

There are k(k − 1) terms in the covariance
sum, so

s2 =
kℓ

n

[
(k − 1)(ℓ− 1)

n− 1
− (k − 1)ℓ

n

]
.
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This means

s1 + s2 =
kℓ

n

[
1− ℓ

n
+

(k − 1)(ℓ− 1)

n− 1
− (k − 1)ℓ

n

]
=

kℓ

n

[
1 +

(k − 1)(ℓ− 1)

n− 1
− kℓ

n

]
=

kℓ

n
· (n− k)(n− ℓ)

n(n− 1)
,

as desired.

ANOTHER VIEW
The mean and variance formulas are the
same if k and ℓ are swapped. It turns out
this symmetry goes deeper:

HyperGeo(n, k, ℓ) = HyperGeo(n, ℓ, k).

To understand why this is true, suppose
the objects to be drawn and the objects
that are drawn are both viewed as being
chosen uniformly at random. This gives a
viewpoint of the hypergeometric with a nice
symmetry property.

F110 Let S = {1, . . . , n}. Suppose A is a randomly
chosen subset of S of size k, and B is a randomly
chosen subset of S of size ℓ. Then

#(A ∩B) ∼ HyperGeo(n, k, ℓ).

Proof. Let i ∈ {1, . . . , k}, then

P(#(A ∩B) = i) = E[I(#(A ∩B) = i)]

= E[E[I(#(A ∩B)) = i | A]]

= E[fH(i)]

= fH(i).

In other words, whatever is chosen for
the set A it holds that[∑

a∈A
Ba |

∑
s∈S

Bs = ℓ

]

has a hypergeometric distribution.
Choosing the A uniformly does not change
that.

One of the the nice things about this
view of a hypergeometric is that the
symmetry between k and ℓ is immediately
apparent.

F111

HyperGeo(n, k, ℓ) ∼ HyperGeo(n, ℓ, k)

Proof. This follows from #(A ∩ B) = #(B ∩
A).

It also gives us a density formulation for
the hypergeometric that is explicitly
symmetric in k and ℓ.

F112 For H ∼ HyperGeo(n, k, ℓ), and
i ∈ {0, . . . ,min(k, ℓ)},

P(H = i) =

(
n

i

)( n−i
k−i,ℓ−i,n−k−ℓ+i

)(
n
k

)(
n
ℓ

) .

Proof. The denominator
(
n
i

)(
n
k

)
is the

number of ways to choose the subsets A
and B. Then

(
n
i

)
is the number of ways to

choose AB where #(AB) = i, and then(
n− i

k − i, ℓ− i, n− k − ℓ+ i

)
is the number of ways to choose the k − i
elements of A \AB and the ℓ− i elements of
B \AB from among {1, . . . , n} \AB.

Since
(

n
a,b,c

)
=
(

n
b,a,c

)
, this expression for

P(H = i) is the same if k and ℓ are
swapped.

287. THOSE CRAZY EIGHTS

In a standard 52 deck of cards, there are
four cards with rank 8 (the 8 of hearts, the
8 of spades, the 8 of diamonds, and the 8
of clubs).

If seven cards are dealt out uniformly at
random from the deck, what is the chance
that exactly two are rank 8?

288. PICK A CARD, ANY CARD

In a standard 52 deck of cards, there are
13 hearts.
a. If five cards are chosen uniformly at
random, what is the chance that all the
cards are hearts?
b. If five cards are chosen uniformly at
random, what is the chance that exactly
three of the cards are hearts?
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289. A BAG OF MARBLES

A bag contains five red and ten blue
marbles. If four marbles are selected at
random, what is the chance that exactly
three are red?

290. STRAINS

There are 23 strains of a particular virus
active in the world today. Three of them
require immediate treatment. If ten
patients have the virus, and are equally
likely to have any strain, what is the
chance that exactly one patient has one of
the strains that require immediate
treatment?

291. A BOX OF SCREWS

A box of screws contains 40 type A and 60
type B screws. If a group of 30 screws are
chosen uniformly at random from the box,
then what is the chance that the last screw
chosen is type A?

292. A BAG OF TOKENS

A bag contains seven blue tokens and six
green tokens. If 6 tokens are taken out of
the bag without replacement uniformly at
random, what is the chance that there are
an equal number of blue and green tokens
in the sample?

293. THE MISSION

Three out of eight members of the Ranger’s
Guild are Wood Elves. If five of the
members are chosen for a secret mission
uniformly at random, what is the chance
that exactly two are Wood Elves?

294. BACK TO THE ASSEMBLY
LINE

Suppose that an assembly line creates 20
items in an hour. Unknown to the tester, 4
of these 20 items are defective. In that
case, if the tester tests 5 different items
chosen uniformly from the 20, what is the
chance that the third item tested is
defective?

295. THE FOREST

There are believed to be 20 deer in a forest.
During one survey, 5 of the deer are
tagged. During the second survey, 11 of
the deer are tagged. If the tagging of the
deer is random, let T be the number of
deer tagged twice.
a. What is E[T ]?
b. What is SD(T )?

296. TURTLES ALL THE WAY
DOWN

From a group of 50 turtles being studied
by ecologists, 7 are chosen uniformly at
random to be tagged. A second survey of
the same turtles tags 10 of then uniformly
at random. Let T be the number of turtles
tagged twice.
a. What is E[T ]?
b. What is SD(T )?
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CHAPTER 28: POISSON POINT
PROCESSES OVER
GENERAL SPACES

G
IANT RATS HAVE INFESTED THE

cellar! The cellar is 120 square
feet in size, and has a left side
with 70 square feet, and a right

side with 50 square feet. If the locations of
the rats follows a Poisson point proccess of
rate 0.1 per square foot, what is the chance
that a given rat is located on the left side of
the cellar?

THE UNIFORM POINT
OF VIEW
In the last chapter, it was observed that in
a Bernoulli point process, the number of
points in a given set S was binomial with
parameters #(S) and parameter p.
Conditioned on the number of points, they
were distributed uniformly on S without
replacement.

This gives a new way of defining a
Poisson point process on state spaces
more general than just [0,∞). This is a two
step process. First, decide the number of
points using a Poisson point process.
Second, place the points down uniformly.

D97 A Poisson point process over a set S ∈ Rn

with Lebesgue measure and constant rate λ is
defined as follows.

a. Let N ∼ Pois(λLeb(S)).

b. Let P = {X1, . . . , XN} be uniformly distributed
over the space S.

Write P ∼ PPP(S, λ).

In this definition, uniformity of the
points is part of the construction. In the
cellar, the Lebesgue measure of the region
is 120 square feet, and so the number of
giant rats is Poisson distributed with a
single parameter (120)(0.1) = 12. That
parameter will be the average number of

rats in the cellar, but there might be more
or less.

In the example below, there were 13 rats
in the cellar. Of these, 9 ended up on the
left side, and 4 ended up on the right side.
To answer the question in the story, given
that each rat was dropped uniformly in the
cellar, there is a 70/120 ≈ 58.33% chance of
landing on the left side. This is because
the probability that X ∼ Unif(S) falls in A is
the measure of A divided by the measure
of S.

E64 Suppose that X ∼ PPP(S, 2.3), where S is a
three dimensional space of volume 84. Then A ⊆ S

has volume 10. What is the chance that any
particular point in X falls into A?
Answer. Any particular point is uniformly
distributed, so this is just

10

84
≈ 0.1190 .

FROM UNIFORM TO BINOMIAL

Consider the distribution of the number of
rats on the left hand side conditioned on
having n points in the process. Because
each of the rat locations is uniform, this
will have a binomial distribution. The
probability of falling in the left hand side is
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proportional to the area of the left hand
side.

F113 For P ∼ PPP(S, λ),

[#(P ∩A) | #(P ∩S) = n] ∼ Bin(n, µ(AS)/µ(S)).

E65 Let S = [0, 1] × [0, 2] and A = [0.5, 1] ×
[0.5, 1.5]. Suppose P is a Poisson point process over
S with 5 points. what is the distribution of #(P ∩
A)?
Answer. The measure (area) of A ⊆ S is
(1 − 0.5)(1.5 − 0.5) = 0.5. The measure of S is
(1 − 0)(2 − 0) = 2. Hence the distribution of
#(P ∩A) is

Bin(5, 0.2500) .

So for Bernoulli processes, the number
of points that fall into a particular subset
has a hypergeometric distribution, but for
Poisson processes, the number of points
that fall into a particular subset will be
binomial! No need to create a new
distribution.

297. BACK TO THE CELLAR

In the cellar from the story the space is a
polygon with vertices
(0, 0), (0, 12), (12, 12), (12, 2), (7, 2) and (7, 0).
a. what is the chance that there are at least
12 rats in the cellar?
b. Given a point that marks a rat’s location,
what is the chance that the point has
second coordinate at least 2?
c. What is the chance that there are no
points with second coordinate less than 2?

298. THE DISEASE

An epidemiologist starts with a basic
model where the infected in a town follow a
Poisson point process. The part of town
south of the river is of size 5 square miles,
while the part north of the river is of size 6
square miles.
a. If the model is correct, what is the
chance that a given infection location is
south of the river?
b. If the model is correct, and the rate of
infection is about 10 per square mile, what
is the average number of infections north
of the river?

299. THE RESTAURANT

Customers arrive to a restaurant at times
modeled by a Poisson point process of rate
15 per hour. If 10 customers arrive in the
first hour, what is the chance that exactly
5 customers arrive in the first half-hour?

300. THE BOOK

Sadly most books contain typos. Suppose
a book has 30 chapters of equal length. If
typos in a book are modeled as a Poisson
point process of rate 10 per chapter, and
there are 278 typos total in the book, what
is the chance that there are no typos in the
first chapter at all?

301. AN ABSTRACT SPACE

Suppose S is a space with measure µ(S) =
15.2. A set A ⊆ S has µ(A) = 11.4. Given
a point x ∈ S in the Poisson point process
of constant rate λ = 2.1 over S, what is the
chance that x ∈ A?

302. MORE ABSTRACT FUN!
Suppose that P is a Poisson point process
of constant rate λ over a space W that has
measure µ(W ) = 200. Given a subset A ⊆
W with µ(A) = 50, what is the chance that
if P has 10 points in the space, exactly five
of the points land in A.
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CHAPTER 29: TRANSFORMING
MULTIVARIATE RANDOM
VARIABLES

C
OMPLEX ARE THE MINDS OF

Wizards, and the model this
Wizard had built was certainly
complicated. The Wizard started

with two random variables, U and V iid
standard normals. Then these were used
to build two new random variables,

W = U2

Y = U − V.

The Wizard knew that W and Y were not
independent, after all, P(Y ≤

√
W ) = 1.

What, the Wizard wondered, would be the
joint density of the pair (W,Y )?

MULTIVARIATE
TRANSFORMATIONS
While the Wizard’s thoughts might be
entirely theoretical, multivariate
transformations are relatively common in
actual statistical analyses. So it is
necessary to develop a method for
transforming the joint density of the
original random variables into the joint
density of the new variables.

To begin, consider what happens in one
dimension.

NONLINEAR TRANSFORMATIONS IN
ONE DIMENSION

Start with a linear transformation: for X
with density fX with respect to Lebesgue
measure, the density of aX + b (where a ̸= 0)
is

faX+b(s) =
1

a
fX

(
s− b

a

)
.

Now consider an example of a nonlinear
transformation. Suppose that
U ∼ Unif([0, 1]) and W = U2. Since U ≥ 0,
this transformation is 1-1: given W ∈ [0, 1]
there is exactly one value of U that maps
to W . In this situation, one can find the

density of W using the linear
approximation to the mapping. That is,
use the derivative to calculate the density.

Before showing this, it will help to know
a bit more about densities. A density f of
random variable X has the property that
for all a < b,

P(X ∈ [a, b]) =

∫ b

a
f(x) dµ(x).

It turns out that it is not necessary to
show this for every a < b. Instead, it is
enough that it is true for at least one
interval containing x for every x.

F114 Suppose that for every x, there exists an
interval [a, b] such that a < x < b and

P(X ∈ [a, b]) =

∫ b

a

f(x) dx.

Then f is a density of X .

The proof is usually shown in a real
analysis course.

F115 Suppose that y = h(x) is a 1-1 mapping with
nonzero, continuous derivative that is either always
positive or always negative over the domain of h.
Then for X with density fX with respect to
Lebesgue measure with probability 1 of being in the
domain of h, the random variable Y = h(X) has
density

fY (y) =
1

|h′(x)|
fX(x),

where x = h−1(y).

Proof. Because h has always positive or
always negative derivative over [a, b], it is
either strictly increasing or strictly
decreasing over [a, b]. Let [c, d] be any
subset of [a, b]. Then the goal is to find
p = P(Y ∈ [c, d].
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p = P(Y ∈ [c, d])

= E[I(h(X) ∈ [c, d])]

=

∫
I(h(x) ∈ [c, d])fX(x) dx

=

∫
x:h(x)∈[c,d])

fX(x) dx

Now make the substitution y = h(x) so
dy/dx = h′(x), and dx = (1/h′(x)) dy.
Suppose h′(x) > 0 for all x ∈ [a, b]. Then

p =

∫ h−1(d)

y=h−1(c)
fX(h−1(x))/h′(x) dx

Since this holds for a nontrivial interval
around x, fX(h−1(x))/h′(x) dx must be the
density of h(X).

Similarly, if h′(x) < 0 for all points in the
interval [c, d], then h(x) is decreasing, and

p =

∫ h−1(c)

y=h−1(d)
fX(h−1(y))/h′(x) dx

=

∫ h−1(d)

y=h−1(c)
−(1/h′(x))fX(h−1(x)) dx.

Note when h′(x) < 0, −h′(x) = |h′(x)|.
Therefore, in either case,

p =

∫ h−1(d)

y=h−1(c)
(1/|h′(x)|)fX(h−1(y)) dx.

This means that (1/|h′(h−1(y))|)fX(h−1(y)) is
the density of fY .

E66 For U ∼ Unif([0, 1]), let W = ln(1/U). Find
the density of W .
Answer. Here h(u) = ln(1/u) is a strictly
decreasing function of u over the domain with
continuous derivative inside the domain. For
w = ln(1/u), solving gives u = exp(−w). Also,
h′(u) = −u−2 · (1/u)−1 = −u−1. Hence

fW (w) = (1/|h′(exp(−w))|)fU (exp(−w))

= |1/(−1/ exp(−w))|I(exp(−w) ∈ [0, 1])

= exp(−w)I(w ∈ [0,∞))

which is the density of a standard exponential as
expected.

HIGHER DIMENSIONAL
TRANSFORMS

When the transformation is multivariate,
the idea is the same, although the
execution is a bit more complicated.

Suppose that F is a function that takes
n real numbers as inputs x = (x1, x2, . . . , xn)
and returns n real numbers as outputs
y = (y1, . . . , yn). Write F : Rn → Rn, and
y = F (x).

Because F has n outputs, one way to
view F is as a compilation of n different
functions:

F (x) = (F1(x), F2(x), . . . , Fn(x)).

In the univariate case, the derivative was
used to create a linear approximation to
the transformation. In the multivariate
case, the Jacobian matrix is used.

F116 For x ∈ Rn and
F (x) = (F1(x), F2(x), . . . , Fn(x)), the Jacobin
matrix of F is an n by n matrix defined by

JF =


∂F1

∂y1
· · · ∂Fn

∂yn

...
...

...
∂Fn

∂y1
· · · ∂Fn

∂yn



Then for a small h ∈ Rn,

F (x+ h) ≈ F (x) + JF (x)h,

making it a good linear approximation.
In one dimension, the factor of the

volume change was just the absolute value
of the derivative. In higher dimensions,
things are more complex. A function of an
n by n matrix called the determinant is
used to calculate the volume change.

This leads to the following result.

F117 Let F : Rn → Rn be an invertible
transformation with Jacobian JF . Suppose
X = (X1, . . . , Xn) has density fX and let
Y = F (X). Then the density of Y is

fY (y) =
1

|det JF (x)|
fX(x),

where x = F−1(y).
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Jacobian alert!
The determinant of the Jacobian matrix is also
sometimes called the Jacobian. Mathematicians
have never quite settled on whether the term
Jacobian should be the matrix or the determinant
of the matrix.

POLAR COORDINATES
One of the most common F : R2 → R2 is the
transformation from rectangular
coordinates to polar coordinates, which
works as follows.

D98 For (x, y) ∈ R2, say that (r, θ) represents the
point in polar coordinates if r ≥ 0, θ ∈ [0, τ), and

x = r cos(θ), y = r sin(θ).

Circular reasoning
This transformation is only invertible if θ is
restricted to lie in [0, τ). Otherwise (r, θ) and
(r, θ + τ) represent the same point.

The Jacobian is a bit tricky to calculate
here given the inverse sin and cos change
as the point crosses over quadrants, so
here the resulting transformation is just
given in differential form.

F118 For the transformation from rectangular to
polar coordinates,

dx dy = r · I(r ≥ 0)I(θ ∈ [0, τ)) dr dθ.

E67 Let (Z1, Z2) be two iid standard normals.
What is the density of (R,Θ) in polar coordinates.
Answer. Note that

P(Z1 ∈ dx, Z2 ∈ dy)

= (fZ1
(x) dx)(fZ2

(y) dy)

=
1

τ
exp

(
−x2 + y2

2

)
dx dy

=
1

τ
exp

(
−r2

2

)
rI(r ≥ 0)I(θ ∈ [0, τ)) dr dθ

=

[
1

τ
I(θ ∈ [0, τ)) dθ

] [
r exp(−r2/2) dr

]
That means the joint density factors into a

density for Θ that is uniform over [0, τ), and a
density for R that is the standard Rayleigh
distribution, so R and Θ are independent when

they are the polar coordinate form of two
independent standard normal random variables!

303. ONE DIMENSIONAL
TRANSFORM

Suppose X has pdf (for x > 0)

fX(x) =
1

x
√
τ
exp(− log(x)2/2).

Let Y = log(X).
a. What is the density of Y ?
b. What is the distribution of Y ?

304. TRANSFORMING AN
EXPONENTIAL

Let T ∼ Exp(1) be a standard exponential.
What is the density of R =

√
2T?

305. TWO DIMENSIONAL
TRANSFORM

Suppose f(x, y) = x2y. If X ∼ Unif([0, 1]) and
Y ∼ Unif([0, 1]), what is the density of S =
f(x2, y)?

306. ANOTHER 2D TRANSFORM

If U and V are independent standard
uniforms, find the density of

X =
U − V

U + V
.

.
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CHAPTER 30: ENCOUNTERS RESOLVED

H
EREIN LIE TALES OF PROBLEMS

vanquished! Not every encounter
in the text has been resolved, but
perhaps the seeker of knowledge

will find some light on their path by
examining the stories told in this chapter.

WHAT IS PROBABILITY?
1. BASIC INDICATORS

What is I(42 > 10)?

SOLUTION

Since 42 = 16 > 10 is true, the answer is 1 .

3. BASIC PROBABILITIES

What is P(42 > 10)?

SOLUTION

Since 42 = 16 > 10 is true, the answer is 1 .

5. INDICATOR FUNCTIONS

Suppose f(x) = I(|x| > 4).
a. What is f(2)?
b. What is f(−2)?
c. What is f(5)?
d. What is f(−5)?

SOLUTION

a. Since (|2| > 4) = F, this is 0 .
b. Also, (| − 2| > 4) = F, this is again 0 .
c. Here (|5| > 4) = T, so this is 1 .
d. This is (| − 5| > 4) = T, so again is 1 .

7. GRAPHING INDICATOR
FUNCTIONS

Indicator functions, when used to make
functions, can be graphed.
a. Suppose f(x) = I(|x| > 4). Graph f(x).
b. Suppose g(x) = (|x|/4)I(|x| > 4). Graph
g(x).

SOLUTION

a. This function is constant 1 whenever x <
−4 or x > 4, and 0 whenever −4 ≤ x ≤ 4. So
it looks like:

-6 -4 -2 0 2 4 6

1

b. When the function is nonzero, the line
being graphed is |x|/4. So that looks like
this:

-6 -4 -2 0 2 4 6

1
2

9. DISJOINT REALS

Suppose X is a real number. State if the
following events are disjoint or not.
a. (X ≤ 3) and (X ≥ 4).
b. (X ≤ 5) and (X ≥ 3).
c. (X ≤ 3) and F.

SOLUTION

a. There is no real number that is both at
most 3 and at least 4, so these intervals
are disjoint .
b. The number X = 4 is both at most 5 and
at least 3, so these are not disjoint .

c. Since F is always F, at most one of the
statements is true, making them disjoint .

11. TRUTH OR DARE?
What is P(10 < 20)?

SOLUTION

This is a true statement, so the probability
is 1 .

13. COUNTING TRUE
STATEMENTS

Suppose s1, s2, and s3 are disjoint
statements. What is the largest that
I(s1) + I(s2) + I(s3) can be?

SOLUTION

The sum of indicators of disjoint events
can be at most 1 .
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15. TWO DICE

If A is the roll of a fair six-sided die, (so
A ∼ d6) and B is the roll of a fair
four-sided die (so B ∼ d4), how many
different outcomes can there be for (A,B)?

SOLUTION

There are 6 possible rolls of the first dies,
and 4 for the second, so 6 · 4 = 24
possibilities for (A,B).

17. PRINCIPLE OF INDIFFERENCE

If A is the roll of a fair six-sided die, (so
A ∼ d6) and B is the roll of the fair
four-sided die (so B ∼ d4), what would
P((A,B) = (3, 1)) using the Principle of
Indifference?

SOLUTION

There are 6 · 4 = 24 total outcomes, so if the
Principle of Indifference applies, the result
is 1/24, which is 0.04166 . . . .

LOGICAL OPERATORS

19. LOGICAL AND AND OR
State if the following are true or false.
a. (1 < 6) ∨ (6 < 1)
b. (1 < 6) ∧ (6 < 1)
a. (6 < 1) ∨ (1 < 6) ∧ (10 > 20)

SOLUTION

a. Since (1 < 6) is true, that is enough to
make (1 < 6) ∨ (6 < 1) equal to T .
b. Since (6 < 1), is false, that is enough to
make (1 < 6) ∧ (6 < 1) equal to F .
c. By order of operations, the ∧ goes first.
Since (10 > 20) is false, (1 < 6) ∧ (10 > 20)
is false as well. Combined with (6 < 1) = F,
the whole statement is F .

21. COUNTABLE LOGICAL AND
Let x be a a positive integer (so
x ∈ {1, 2, 3, . . .}). State if
(x ≥ 1) ∧ (x ≥ 2) ∧ (x ≥ 3) ∧ · · · is true or
false.

SOLUTION

For any integer, eventually there will be
clause of the form (x ≥ x+ 1) which is false.
Since the countable logical AND contains

at least one false value, the statement is
F .

23. MORE REDUCING LOGIC TO
ARITHMETIC

Write I(¬s ∨ negr) using only constants, I(s),
and I(r).

SOLUTION

Using our rules:

I(¬s ∨ ¬r) = I(¬s)I(¬r)

25. PROOF WITH INDICATOR
FUNCTIONS

Prove that ¬(s ∧ r) = ¬s ∨ ¬r using indicator
functions.

SOLUTION

The indicator function of the right hand
side is

I(¬s ∨ ¬r)
= I(¬s) + I(¬r)− I(¬s¬r)
= 1− I(s) + 1− I(r)− I(¬s)I(¬r)
= 2− I(s)− I(r)− (1− I(s))(1− I(r))
= 2− I(s)− I(r)− 1 + I(s) + I(r)− I(s)I(r)
= 1− I(s)I(r)
= 1− I(sr)
= I(¬(sr)),

which is the indicator function of the left
hand side. Therefore, the associated logical
expressions are equal. □

27. LOGICAL ORDER OF
OPERATIONS

Write the order of operations for s ∨ w ∧ ¬r
explicitly using parentheses.

SOLUTION

Negatives come before logical AND which
comes before logical OR. This ordering
gives

s ∨ (w ∧ (¬r)).

29. DE MORGAN’S LAWS

Write ¬(s1 ∧ ¬s2) using only logical OR and
logical NOT.
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SOLUTION

Using De Morgan’s laws and ¬(¬s2) = s2
gives:

¬s1 ∨ s2.

31. IMPLICATION AND SUBSETS

State whether the following are true or
false.
a. (x > 4) → (x > 10).
b. (x > 4) → (x > 3).
c. {a, b, c} ⊆ {a, b, c, d}.
d. {a, b, c} ⊆ {a, c, e, g}.

SOLUTION

a. This is F , for instance x = 5 has (x >
4) = T and (x > 10) = F.
b. This is T . Since (x > 4) and (4 > 3),
transitivity of the greater than symbol
gives (x > 3).
c. This is T . For (x = a), (x = b), and (x =
c), it holds that x ∈ {a, b, c, d}.
d. This is F since (b ∈ {a, b, c}) = T (so b
is an element of the set on the left) but (b ∈
{a, c, e, g}) = F (so b is not an element of the
set on the right).

RULES OF
PROBABILITY

33. TRUE STATEMENTS

For X ∈ R, what is P(X2 ≥ 0)?

SOLUTION

If X is a real number, X2 is always at least
zero. Hence

P(X2 ≥ 0) = P(T) = 1,

so the answer is 1 .

35. FALSE STATEMENTS

For Y ∈ R, what is P(|Y | < 0)?

SOLUTION

If Y is a real number, |Y | is always at least
zero. Hence

P(|Y | < 0) = P(F) = 0,

so the answer is 0 .

37. ROLLING THE DICE

Consider the following.
a. If W ∼ d6, what is P(W is even)?
b. If R ∼ d10, what is P(R ≤ 7)?
c. If Y ∼ d100, what is P(Y ≤ 72)?

SOLUTION

a. The event that W is even is the same as
W ∈ {2, 4, 6}, which is the disjoint logical
OR of W = 2, W = 4, and W = 6. Each of
these have probability 1/6, so the answer is

a = P(W ∈ {2, 4, 6})
= P(W = 2) + P(W = 4) + P(W = 6)

=
1

6
+

1

6
+

1

6
=

1

2
,

or 50% .

b. There are 7 ways out of 10 that R can be
at most 7, so 70% .

c. There are 72 ways out of 100 that R can
be at most 72, so 72% .

39. USING RULES

If P(Y < 2) = 0.3 and P(Y ∈ [2, 3]) = 0.4, what
is P(Y ∈ (−∞, 3])?

SOLUTION

Note that (Y < 2) and (Y ∈ [2, 3]) are
disjoint events. Also,
(Y < 2) ∨ (Y ∈ [2, 3]) = (Y ∈ (−∞, 3])). Hence

P(Y ∈ (−∞, 3])) = P(Y < 2) + P(Y ∈ [2, 3])

= 0.3 + 0.4,

which is 70% .

41. NEGATION RULE

If P(G ≥ 4) = 0.2, what is P(G < 4)?

SOLUTION

Note (G ≥ 4) = ¬(G < 4). Hence

P(G < 4) = 1− P(G ≥ 4) = 1− 0.2,

so the answer is 80% .

43. IMPLICATION

Given that P(R ≤ 4) = 0.2, what can be said
about P(R ≤ 5)?
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SOLUTION

Since (R ≤ 4) → (R ≤ 5),

P(R ≤ 5) ≥ 20% .

45. COMBINING RULES

Suppose P(X ≥ 3) = 0.4, P(X ≤ 4) = 0.8.
What is P(X ∈ [3, 4])?

SOLUTION

Note that P(X ≥ 3∨X ≤ 4) = P(T) = 1. Hence

1 = P(X ≥ 3) + P(X ≤ 4)− P(X ≥ 3, X ≤ 4),

so P(X ∈ [3, 4]) = 0.4 + 0.8− 1 which is 20% .

CONDITIONAL
PROBABILITY

47. A CONDITIONAL DIE

Suppose X ∼ d6. Find P(X = 1 | X ≤ 4).

SOLUTION

By the conditional probability formula:

P(X = 1 | X ≤ 4) =
P(X = 1, X ≤ 4)

P(X ≤ 4)

=
P(X = 1)

P(X ≤ 4)

=
1/6

4/6
= 1/4,

which is 25% .

49. INTERVAL CONDITIONING

The probability that X ∈ [3, 7] is 0.423 and
the probability that X ≤ 7 is 0.620. What is
P(X ∈ [3, 7] | X ≤ 7)?

SOLUTION

By the conditional probability formula, this
is

P(X ∈ [3, 7] | X ≤ 7) =
P(X ∈ [3, 7], X ≤ 7)

P(X ≤ 7)

=
P(X ∈ [3, 7])

P(X ≤ 7)

=
0.423

0.620
,

which is approximately 0.6822 .

51. BLOOD TESTS

Given that a patient has a particular
disease, the chance that a particular blood
test comes back positive is 75%. The
chance that the blood test comes back
positive if the patient does not have the
disease is 10%. The chance of having the
disease is 3%. What is the chance that a
patient gets back a positive?

SOLUTION

Let p be the event that the blood test is
positive, and d the event that the patient
has the disease. Then the goal is to find
P(p). The event p can be true either if d is
true or d is false. That is,

P(p) = P(pd) + P(p(¬d)).

Using the two-stage rule:

P(p) = P(p | d)P(d) + P(p | ¬d)P(¬d).

Filling in our given numbers gives:

P(p) = (75%)(3%) + (10%)(97%),

which is 11.95% .

53. THE SATELLITE

A weather satellite detects precipitation
when precipitation exists 98% of the time.
It gives a false positive and reports
precipitation when none exists 4% of the
time. If there is a 10% chance of
precipitation, what is the chance that the
satellite reports that there is precipitation?

SOLUTION

Let p be the event of precipitation, and t
the event of a positive test result. Then

P(t) = P(tp) + P(t(¬p))
= P(p)P(t | p) + P(¬p)P(t | ¬p)
= (10%)(98%) + (90%)(4%),

which is 0.1340 .

55. RAINING ONCE MORE

If the odds that it will rain today are 4 to
5, what is the probability that it will rain
today?
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SOLUTION

Let r be the event that it rains today. Then

P(r)
P(¬r)

=
P(r)

1− P(r)
=

4

5
,

so

5P(r) = 4− 4P(r) ⇒ 9P(r) = 4 ⇒ P(r) = 4/9.

Hence the chance is 0.4444 . . . .

57. ODDS AND FAIRNESS

Prove that if the odds for s are greater than
1, then P(s) > 50%.

SOLUTION

Suppose P(s)/P(¬s) > 1. Then by the
negation rule,

P(s)
1− P(s)

> 1,

which means

P(s) > 1− P(s).

Bringing the −P(s) term over to the other
side gives 2P(s) > 1, so P(s) > 1/2 = 50% as
desired. □.

59. EXPERIENCE

Three out of seven staff members have
experience working with R. If two staff
members are chosen uniformly to be part
of a task force, what is the chance that
both will know R?

SOLUTION

Let r1 be the event that the first staff
member chosen knows R, and r2 the event
that the second staff member chosen
knows R. Then if the first staff member is
chosen uniformly from the seven
members,

P(r1) =
2

7
.

If r1 is true, that leaves only 1 out of 6
staff members that know R. Hence

P(r2 | r1) =
1

6
.

Combine to get

P(r1r2) = P(r1)P(r2 | r1) =
2

7
· 1
6
,

which is about 0.04761 .

61. THE FOOD PANTRY

There are 9 cans in a food pantry which
are unlabeled, but the inventory sheet says
that they must be 4 cans of green beans
and 5 cans of corn.
a. If 4 cans are chosen uniformly without
replacement, and the first two cans chosen
have green beans, what is that chance that
the third can has green beans?
b. If 4 cans are chosen uniformly without
replacement, what are the chances that all
4 have green beans?

SOLUTION

Let si be the event that the ith chosen can
has green beans.
a. The goal for this problem is to find

P(s3 | s1s2).

If the first two cans have green beans, that
leaves 2 cans with green beans out of 7
cans. So the desired probability is 2/7,
which is about 0.2857 .
b. Now the goal is to find P(s1s2s3s4). Using
conditioning:

P(s1s2s3s4) = P(s1)P(s2s3s4 | s1)

=
4

9
P(s2 | s1)P(s3s4 | s1s2)

=
4

9
· 3
8
P(s3 | s1s2)P(s4 | s1s2s3)

=
4

9
· 3
8

2

7

1

6
.

This is about 0.007936 .

INDEPENDENCE

63. INDEPENDENCE OF TWO
EVENTS

Suppose that P(a1) = 0.3 and P(a2) = 0.6,
where a1 and a2 are independent events.
What is P(a1a2)?

SOLUTION

Since they are independent:

P(a1a2) = P(a1)P(a2) = (0.3)(0.6),

which is 18% .
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65. TEN INDEPENDENT EVENTS

Let X1, . . . , X10 be independent rolls of a
fair six-sided die. What is the chance that
no 5 is rolled?

SOLUTION

Let ri = (Xi = 5). Then our goal is to find:

p = P(¬r1 ∧ ¬r2 ∧ · · · ¬r10).

Since the events ri are independent, so are
¬ri, and

p =
10∏
i=1

P(¬ri) =
10∏
i=1

1− P(ri) =
(
5

6

)10

,

which is about 16.15% .

67. FLIPS OF A 0-1 COIN

Suppose that X1 and X2 are random
variables that are independent and equally
likely to be 0 or 1.
a. If X1 = 1, then what is the probability
that X2 = 1?
b. If X1+X2 ≥ 1 then what is the probability
that X2 = 1?

SOLUTION

a. Because they are independent,

P(X2 = 1 | X1 = 1) = P(X2 = 1) = 1/2,

which is 50% .
b. Note that

(X1+X2 ≥ 1) = (X1, X2) ∈ {(0, 1), (1, 0), (1, 1)}.

So

p = P(X2 = 1 | X1 +X2 ≥ 1)

=
P(X2 = 1, X1 +X2 ≥ 1)

P(X1 +X2 ≥ 1)

=
1/2

3/4
=

2

3
,

which is about 66.66% .

69. THE ARCHERS

Four archers independently fire at a target.
Each has a 0.2 chance of striking the
target.
a. What is the chance that all the archers
miss the target?

b. What is the chance that at least one
archer hits the target?

SOLUTION

a. If ai is the event that archer i strikes the
target, this this problem is to find

p = P(¬a1 ∧ ¬a2 ∧ ¬a3 ∧ ¬a4)
= P(¬a1)P(¬a2)P(¬a3)P(¬a4)
= (1− P(a1)) · · · (1− P(a4))
= 0.84

= 0.4096 .

b. The negation of at least one archer
hitting the target is no archers hitting the
target, and that was found above.

b = P(a1 ∨ · · · ∨ a4)

= 1− P(¬a1 · · · ¬a4)
= 1− 0.4096

= 0.5904

71. FACTORY WOES

On a given day in a factory, there is a 3%
chance of a shutdown, a 1% chance of a
worker injury, and a 2% chance of a
delivery delay. If these three events are
independent, what is the chance that all
three occur on a given day?

SOLUTION

Since the events are independent, the
probability that all three occur is just the
product of the individual probabilities:

(0.03)(0.01)(0.02) = 0.000006000 .

BAYES RULE

73. BAYES’ RULE

Suppose that P(X = 1) = 0.5, P(X = 2) = 0.3,
P(X = 3) = 0.2, and that P(r | X) = 1/X.

a. What is P(r)?
b. What is P(X = 1 | r)?
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SOLUTION

a. Using the Law of Total Probability,

P(r) =
3∑

i=1

P(r | X = i)P(X = i)

= (1/1)(0.5) + (1/2)(0.3) + (1/3)(0.2)

= 43/60,

which is about 0.7166 .

b. Using Bayes’ Rule:

P(X = 1 | r) = P(r | X = 1)
P(X = 1)

P(r)

=
1

1
· 1/2

43/60
,

which is 0.6833 .

75. MACHINE PROBLEMS

Machine A has a 1% chance of making a
widget with an error, while Machine B has
a 5% chance of error.

If Machine A makes 70% of the widgets
and Machine B makes 30%, what is the
chance that a widget with an error came
from Machine A?

SOLUTION

Let a be the event that the widget came
from Machine A, and e be the event that
the widge had an error. Then from the
problem

P(a) = 0.7

P(e | a) = 0.01

P(e | ¬a) = 0.05.

Hence

P(e) = P(e | a)P(a) + P(e | ¬a)P(¬a)
= (0.01)(0.7) + (0.05)(0.3) = 0.022,

and by Bayes’ Rule

P(a | e) = P(e | a)P(a)
P(e)

=
(0.01)(0.7)

0.22
,

which is 0.3181

77. CHOLESTEROL

Suppose that in a population, there is a
3% chance of having a genetic marker that
doubles the chance of having high
cholesterol. So if H is the event that the
person has high cholesterol, and G is the
event that they have the genetic marker,
then

P(H | G) = 2P(H | GC).

Given that someone has high cholesterol,
what is the chance that they have the
marker?

SOLUTION

Our goal is to find P(G | H). Using Bayes’
Rule:

P(G | H) =
P(H | G)P(G)

P(H | G)P(G) + P(H | GC)P(GC)
.

Replacing P(H | GC) with (1/2)P(H | G)
gives

P(G | H) =
P(H | G)P(G)

P(H | G)P(G) + (1/2)P(H | G)P(GC)
.

Note that P(H | G) cancels out of this
expression!

P(G | H) =
0.03

0.03 + (1/2)(0.97)
,

which gives P(G | H) = 0.05825 .

RANDOM VARIABLES

79. SIX ARROWS

An archer shoots six arrows at a target.
Each hits (independently of the others)
with probability 15%. What is the chance
that at least five arrows hit?

SOLUTION

Let H be the number of arrows that hit the
target. Then there is only one outcome
SSSSSS where all 6 arrows hit.

P(SSSSSS) = 0.156 = 0.0000139062 . . . .

There are six outcomes
FSSSSS, . . . , SSSSSF where H = 5. Hence

P(H = 5) = 5P(FSSSSS)

= 5(0.15)5(0.85) = 0.0003227 . . . .

Therefore, the solution (to four
significant figures) is 0.0003227 .
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81. COIN FLIPS

A bored merchant with a coin starts
flipping the coin until the first head is seen.
If G is the number of flips (including the
final one) until a head is seen, then

P(G = i) = (0.2)i−1(0.8),

for all i ∈ {1, 2, . . .}.
Verify that

P(G ∈ {1, 2, . . .}) = 1.

SOLUTION

The goal is to prove that P(G ∈ {1, 2, . . .}) =
1.

Proof. The events (G = i) are disjoint for all
i ∈ {1, 2, 3, . . .}. Hence the countable
additivity rule can be used to say:

P(G ∈ {1, 2, . . .}) = P

( ∞∨
i=1

(G = i)

)

=
∞∑
i=1

P(G = i)

=
∞∑
i=1

(0.2)i−1(0.8)

=
0.8

1− 0.2
= 1,

as desired.

83. MEASURABLE SETS

Suppose [3, 4], [4, 5), and [5, 6) are
measurable with respect to X. Prove that

{[3, 5), [3, 6), [4, 6)} ⊆ FX .

SOLUTION

Recall that the empty set is always in F .
Hence

[3, 4] ∪ [4, 5) ∪ ∅ ∪ ∅ ∪ · · · = [3, 5) ∈ F
[3, 4] ∪ [4, 5) ∪ [5, 6) ∪ ∅ ∪ ∅ ∪ · · · = [3, 6) ∈ F

[4, 5) ∪ [5, 6) ∪ ∅ ∪ ∅ ∪ · · · = [4, 6) ∈ F ,

which completes the proof. □

85. THE TRIANGLE

Suppose that (X,Y ) are equally likely to be
(0, 0), (0, 1), or (1, 0).
a. What is P(X = 0)?
b. What is P(Y = 0)?
c. What is P(X = 0, Y = 0)?
d. Are X and Y independent?

SOLUTION

a. Each point has probability 1/3 of
occurring, and there are two points with
X = 0, so

P(X = 0) = 2/3 = 0.6666 . . . .

b. Two out of three points has Y = 0, so

P(Y = 0) = 2/3 = 0.6666 . . . .

c. One point has both X = 0 and Y = 0, so

P(X = 0, Y = 0) = 1/3 = 0.3333 . . . .

d. The random variables X and Y are
not independent , which we know because

P(X = 0, Y = 0) =
1

3

but

P(X = 0)P(Y = 0) =
2

3
· 2
3
=

4

9
̸= 1

3
=

3

9
.

87. TRANSPORT

A bus arrives after a time given by the
continuous random variable T .
a. What is P(T = 4)?
b. If P(T < 4) = 0.4, what is P(T ≤ 4)?
c. If P(T < 4) = 0.4, what is P(T > 4)?

SOLUTION

a. Because T is continuous, the probability
it equals a particular value is 0 .

b. Because (T < 4) and (T = 4) are disjoint,

P(T ≤ 4) = P(T < 4) + P(T = 4) = P(T < 4).

So P(T ≤ 4) is also 0.4000 .
c. Finally, P(T > 4) = 1 − P(T ≤ 4), and
from the last section of the problem, this is
0.6000 .
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UNIFORM RANDOM
VARIABLES

89. SUMMING THREE DICE

Suppose D1 ∼ d10, D2 ∼ d20 and D3 ∼ d6
are independent. What is

P(D1 +D2 +D3 = 36)?

SOLUTION

The only way that the sum of these three
variables can add to 36 is if D1 = 10, D2 =
20, and D3 = 6. Therefore the answer is

P(D1 = 10, D2 = 20, D3 = 6) =
1

10
· 1
20

·1
6
=

1

1200
,

which is about 0.0008333 .

91. STANDARD UNIFORM

For U ∼ Unif([0, 1]), find:
a. P(U ≤ 0.7).
b. P(U ≤ −0.7).
c. P(U ≤ 1.3).

SOLUTION

a. Note that

P(U ≤ 0.7) = P(U ∈ (−∞, 0.7])

= P(U ∈ (−∞, 0.7] ∩ [0, 1]))

= P(U ∈ [0, 0.7]).

So

P(U ∈ (−∞, 0.7]) =
Leb([0, 0.7])

Leb([0, 1])

=
0.7− 0

1− 0
,

which is 70% .
b. Similarly,

P(U ≤ −0.7) = P(U ∈ (−∞, 0.7] ∩ [0, 1])

= P(U ∈ ∅)
= P(F),

which is 0 .

c. Finally,

P(U ≤ 1.3) = P(U ∈ (−∞, 1.3] ∩ [0, 1])

= P(U ∈ [0, 1])

= P(T),

so the answer is 1 .

93. FUNCTIONS OF A UNIFORM

Prove for the discrete uniform
A ∼ Unif({0, 1, 2}) that A2 ∼ Unif({0, 1, 4}).

SOLUTION

Note that

P(A2 = 0) = P(A = 0) = 1/3,

P(A2 = 1) = P(A = 1) = 1/3,

P(A2 = 4) = P(A = 2) = 1/3,

and so by definition, A2 ∼ Unif({0, 1, 2}) .

95. CONDITIONAL UNIFORM

Suppose that Y ∼ d20. What is the
distribution of:

a. Y given that Y ≥ 5.

b. Y given that Y < 5.

SOLUTION

The distribution of a uniform conditioned
on being in a set is also uniform over the
conditioned set.

a. So [Y | Y ≥ 5] ∼ Unif({5, 6, . . . , 20}) .

b. Here [Y | Y < 5] ∼ Unif({1, 2, 3, 4}) .

97. DEFECTIVE TESTING

In a box with 20 parts, 2 are defective. An
inspector picks a part out of the box
uniformly at random. What is the
probability that the inspector finds a
defective part?

SOLUTION

Since two of the 20 parts are defective,
there is a 2/20, or 10% chance of finding a
defective part.
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FUNCTIONS OF
RANDOM VARIABLES

99. FINDING A CDF

If X ∼ Unif([−1, 2]), find the cdf of |X|.

SOLUTION

Let a < 0. Then P(|X| ≤ a) = 0 since |X| is
always nonnegative.

Let a > 2. Then P(|X| ≤ a) = 1, since the
absolute value of any number in [−1, 2] is
at most 2.

Now it gets interesting. Recall that (|X| ≤
a) = (−a ≤ x ≤ a) for a ≥ 0. Let a ∈ [0, 1].
Then

P(|X| ≤ a) = P(−a ≤ X ≤ a)

=
a− (−a)

3
=

2

3
a.

Let a ∈ (1, 2]. Then

P(|X| ≤ a) = P(−a ≤ X ≤ a)

= P(−1 ≤ X ≤ a)

=
a− (−1)

3

=
a+ 1

3
.

This looks like this when plotted.

101. INDICATORS OF A UNIFORM

If W ∼ Unif([−2, 4]) and A = I(W ≤ 3), what
is the distribution of W?

SOLUTION

Since W is either 0 or 1, it must have a
Bernoulli distribution. The probability
W = 1 is the probability W ≤ 3, which is
(4 − 3)/(4 − (−2)) = 1/6. Hence
W ∼ Bern(1/6) .

103. SCALING AND SHIFTING
UNIFORMS

Consider U1 ∼ Unif([3, 8]) and
U2 ∼ Unif([0, 1]). Show that U1 and 5U2 + 3
have the same cdf.

SOLUTION

First, the cdf of U1 depends on whether or
not a < 3, a ∈ [3, 8], or a > 8. In the case a <
3, P(U1 ≤ a) = 0. In the case a > 8, P(U1 ≤
a) = 1. When a ∈ [3, 8], the probability for
uniforms gives

P(U1 ≤ a) =
a− 3

8− 3
=

a− 3

5
.

Combining these cases gives

cdfU1(a) =
a− 3

5
I(a ∈ [3, 8]) + I(a > 8).

Similarly, the cdf of U2 is

cdfU2(a) = aI(a ∈ [0, 1]) + I(a > 1).

Since 5U2 + 3 ≤ a if and only if U2 ≤ (a −
3)/5,

cdf5U2+3(a)

= cdfU2((a− 3)/5)

=
a− 3

5
I
(
a− 3

5
∈ [0, 1]

)
+ I
(
a− 3

5
> 1

)
=

a− 3

5
I(a ∈ [3, 8]) + I(a > 8).

Therefore, both U1 and 5U2 + 3 have the
same cdf!

105. SCALING EXPONENTIALS

Recall that if U ∼ Unif([0, 1]), − ln(U)/λ ∼
Exp(λ). Use this to prove that if X ∼ Exp(λ),
X/c ∼ Exp(cλ) for any nonnegative constant
c.

SOLUTION

Let X ∼ Exp(λ). Then X = − ln(U)/λ where
U ∼ Unif([0, 1]). Hence X/c = − ln(U)/[cλ],
and X/c ∼ Exp(cλ). □

107. CONDITIONAL
EXPECTATIONS

Suppose T ∼ Exp(2.4). What is P(T ≥ 4 | T ≥
1)?
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SOLUTION

Recall T = −(1/2.4) ln(U). So

(T ≥ t) = (−(1/2.4) ln(U) ≥ t)

= (ln(U) ≤ −2.4t)

= (U ≤ exp(−2.4t)).

Hence

P(T ≥ 4 | T ≥ 1) =
P(T ≥ 4, T ≥ 1)

P(T ≥ 1)

=
P(T ≥ 4)

P(T ≥ 1)

=
exp(−2.4 · 4)
exp(−2.4 · 1)

= exp(−2.4 · 3),

which is about 0.0007465 .

109. THE CEILING FUNCTION

Let ⌈x⌉ be the ceiling function that is the
smallest integer greater than or equal to x.
So ⌈4.3⌉ = ⌈5⌉ = 5. Note that for an integer
i, ⌈x⌉ = i if and only if i − 1 < x ≤ i. For
U ∼ Unif([0, 1]) find
a. P(⌈2U⌉ = 2)
b. P(⌈2U⌉ = 1)
c. P(⌈2U⌉ = 0)

SOLUTION

a. Note

P(⌈2U⌉ = 2) = P(1 < 2U ≤ 2)

= P(1/2 < U ≤ 1)

= (1− 1/2)/(1− 0),

which is 50% .
b. Similarly, this is

P(⌈2U⌉ = 1) = P(0 < 2U ≤ 1)

= P(0 < U ≤ 1/2)

= (1/2− 0)/(1− 0),

which is 50% .
c. Finally, this is

P(⌈2U⌉ = 0) = P(−1 < 2U ≤ 0)

= P(−1/2 < U ≤ 0)

= 0.

There is no chance of this happening, so
the answer is 0 .

THE BERNOULLI
PROCESS

111. BASIC BINOMIALS

Suppose that X ∼ Bin(100, 0.05).
a. What is P(X = 0)?
b. What is P(X = 1)?

SOLUTION

a. This is P(FFF · · ·F ) = (0.95)100 which is
about 0.005920 .

b. This is(
100

1

)
(0.05)(0.95)99 =

100!

99!1!
· (0.05)(0.95)99

= 100 · (0.05)(0.95)99,

which is about 0.03116 .

113. BASIC GEOMETRICS

Let G ∼ Geo(0.3). Find P(G ≥ 3).

SOLUTION

Recall G = inf{i : Bi = 1} where B1, B2, . . .
are iid Bern(0.3). Note that G ≥ 3 if and
only if B1 = B2 = 0. The probability this
happens is

P(B1 = B2 = 0) = P(B1 = 0)P(B2 = 0)

= (0.7)(0.7),

so the result is 49%

121. FLY AWAY

A plane scout looking for forest fires during
July in Montana has a 3% chance
(independently) of noticing a fire each time
a flight is taken. What is the chance that
more than 30 flights are needed before the
first fire is seen?

SOLUTION

In order to require more than 30 flights,
the first 30 flights must be failures. This
happens (because of independence) with
probability

(1− 0.03)30 = 0.4010 . . . .
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THE POISSON POINT
PROCESS

123. TAILS OF EXPONENTIALS

If A is a standard exponential, what is
P(A ≥ 1)?

SOLUTION

Since A = ln(1/U) where U ∼ Unif([0, 1]),

P(A ≥ 1) = P(ln(1/U) ≥ 1)

= P(1/U ≥ exp(1))

= P(U ≤ exp(−1))

= exp(−1),

which is about 36.78% .

125. BERNOULLIS FROM
GEOMETRICS

If G1 = 2, G2 = 2, and G3 = 5 are used to
create a Bernoulli point process, what are
the values of B1, . . . , B7?

SOLUTION

The point process will be

{2, 2 + 2, 2 + 2 + 5, . . .} = {2, 4, 9, . . .}.

Hence B2 = B4 = B9 = 1, but Bi = 0 for
i /∈ {2, 4, 9, . . .}. Hence

(B1, . . . , B7) = (0, 1, 0, 1, 0, 0, 0) .

127. UNDERSTANDING POISSON
POINT PROCESSES

Let P = {T1, T2, . . .} where T1 < T2 < · · · be a
Poisson point process of rate 1.2.
a. What is the distribution of T1?
b. What is the distribution of T2?
c. What is the probability that there are
exactly two points in [0, 1]?

SOLUTION

a. This is Exp(1.2) .

b. This is Gamma(2, 1.2) .
c. Since N[0,1] ∼ Pois(1.2 · (1− 0)),

P(N[0,1]) = 2) = exp(−1.2)
1.22

2!
,

which is about 0.2168 .

129. CONDITIONAL PPP
Let P ∼ PPP(1.4). What is the probability
that there are two points in [0, 2], given
that there are four points in [0, 4]?

SOLUTION

Note N[0,4] = N[0,2]+N[2,4] (Note N[2,2] = 0 with
probability 1.) If N[0,4] = 4 and N[0,2] = 2,
then N[2,4] = 4− 2 = 2 as well.

So the answer a that is the target is

a = P(N[0,2] = 2 | N[0,4]=4)

=
P(N[0,2] = 2, N[0,4] = 4)

P(N[0,4] = 4)

=
P(N[0,2] = 2, N[2,4] = 2)

P(N[0,4] = 4)

=
P(N[0,2] = 2)P(N[2,4] = 2)

P(N[0,4] = 4)

131. THE RESTAURANT

A restaurant models arriving customers as
a Poisson point process of rate 70 per
hour.

What is the chance that there is at least
one customer arrival in the first minute?

SOLUTION

First convert everything to minutes. One
hour equals 60 minutes, so

70

hour
=

70

60 min
=

7

6
per min

Hence

N[0,1] ∼ Pois((7/6)(1− 0)),

and the chance this is at least 1 is

P(N[0,1] ≥ 1) = 1− P(N[0,1] = 0)

= 1− exp(−7/6)
(7/6)0

1!
,

or about 0.6885 .
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Le Poisson

DENSITIES FOR
CONTINUOUS RANDOM
VARIABLES

133. DENSITY OF A UNIFORM

Suppose P(Y ∈ dy) = (1/30)I(y ∈ [0, 30]) dy.
What is P(Y ≤ 5)?

SOLUTION

This is

P(Y ≤ 5) =

∫
y∈(−∞,5])

P(Y ∈ dy)

=

∫
y∈(−∞,5])

(1/30)I(y ∈ [0, 30]) dy

=

∫
y∈[0,5])

(1/30) dy

= (1/30)(5− 0) = 1/6,

which is about 0.1666 .

135. MORE UNIFORM DENSITY

Say that
P(W ∈ dw) = (1/20)I(w ∈ [30, 50]) dw. What

is the density of W?

SOLUTION

The density is just P(W ∈ dw)/dw, or

(1/20)I(w ∈ [30, 50]).

137. ANOTHER EXPONENTIAL
DENSITY

Suppose P(R ∈ dr) = 3 exp(−3r)I(r ≥ 0) dr.
Find cdfR(a).

SOLUTION

For r < 0,

P(R ≤ r) =

∫ r

−∞
3 exp(−3r)I(r ≥ 0) dr

=

∫ r

−∞
0 dr = 0,

for r ≥ 0,

P(R ≤ r) =

∫ r

−∞
3 exp(−3r)I(r ≥ 0) dr

=

∫ r

0
3 exp(−3r) dr

= − exp(−3r)|r0
= 1− exp(−3r).

Therefore the cdf is

cdfR(r) = [1− exp(−3r)]I(r ≥ 0).

139. NORMALIZING AN
EXPONENTIAL

Suppose
P(R ∈ dr) = C exp(−3r)I(r ∈ [0, 2]) dr. Find
C.

SOLUTION

Integrate the density from −∞ to ∞,∫ ∞

−∞
C exp(−3r)I(r ∈ [0, 2]) dr = 1∫ 2

0
C exp(−3r) dr = 1

C(−1/3) exp(−3r)|20 = 1

C(1/3)[1− exp(−6)] = 1

3/[1− exp(−6)] = C,

which gives about C = 3.007 .
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141. DENSITY OF A FUNCTION OF
A UNIFORM

Suppose U ∼ Unif([0, 1]), and W =
√
U .

a. Find cdfW .
b. Find pdfW .

SOLUTION

Use the function relationship.
a. Let w ∈ R:

P(W ≤ w) = P(
√
U ≤ w)

which is 0 if w ≤ 0. If w ≥ 0,

P(W ≤ w) = P(U ≤ w2).

This is just w2 if w ∈ [0, 1], and 1 if w > 1.
Hence the cdf is

cdfW (w) = w2I(w ∈ [0, 1]) + I(w > 1).

b. To find the pdf, differentiate:

pdfW (w) = 2wI(w ∈ [0, 1]) + I(w > 1).

143. FROM CDF TO PDF

Suppose cdfX(x) = (1 − 1/x)I(x ≥ 1). Find
pdfX(x).

SOLUTION

Differentiate to get:

pdfX(x) = (1/x2)I(x ≥ 1).

Find pdfX(x).

DENSITIES FOR
DISCRETE RANDOM
VARIABLES

145. PDF FOR A DIE

If Y ∼ d10, what is pdfY (i)?

SOLUTION

This is just P(Y = i), which is

P(Y = i) =
1

10
I(i ∈ {1, . . . , 10}).

147. BINOMIAL MODE

Suppose pdfB(i) =
(
10
i

)
pi(1− p)10−i.

a. What is P(B = 6)?
b. What is the mode if p = 0.42?

SOLUTION

a. This probability is

P(B = 6) = pdfB(6) =
10!

6!4!
p6(1− p)4,

or 210p6(1− p)4 .

b. Note that for i ∈ {0, . . . , 9},

pdfB(i+ 1)

pdfB(i)

is the product

10!/[(i+ 1)!(10− i− 1)!]

10!/[i!(n− i)!]

pi+1(1− p)10−n−1

pi(1− p)10−i
.

Canceling as much as possible gives

pdfB(i+ 1)

pdfB(i)
=

9− i

(i+ 1)
· p

1− p
.

When p = 0.42, this is

9− i

i+ 1
· 0.42
0.58

.

When i = 0 this is much greater than 1, as
i increases it starts going down. Solving for
when this is strictly less than 1 gives i >
16/5 = 3.2. Hence the mode is at i = 4 .

149. GAMMA MEDIAN

Suppose pdfG(r) = (1/6)r3 exp(−r)I(r ≥ 0).
Find the median of G.

SOLUTION

Note for a ≥ 0,

P(G ≤ a) =

∫ a

−∞
(1/6)r3 exp(−r)I(r ≥ 0) dr

=

∫ a

0
(1/6)r3 exp(−r)I(r ≥ 0) dr

= 1− (1 + a+ (1/2)a2 + (1/6)a3) exp(−a).

Setting that equal to 1/2 and solving
gives a about 3.672 .

151. CDF OF A SCALED DIE

For X ∼ d6, what is the cdf of 2X?
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SOLUTION

Saying X ∼ d6 is the same as saying
X ∼ Unif({1, 2, 3, 4, 5, 6}). That makes
2X ∼ Unif({2, 4, 6, 8, 10, 12}. Therefore, there
is a jump of size 1/6 at each of
{2, 4, 6, 8, 10, 12} in the cdf.

So one way to write the cdf is with
indicator functions:

cdfX(a) =
1

6
[I(a ≥ 2) + I(a ≥ 4) + · · ·+

I(a ≥ 12)] .

Another way is with the floor function.
The floor function ( written floor(x) or ⌊x⌋)
rounds x down to the next integer. For
instance, ⌊2.3⌋ = ⌊2⌋ = 2.

For the cdf at a, the goal is to multiply
1/6 by the number of integer multiples of 2
given, as long as a is between 2 and 12.
For a greater than 12, the cdf is just 1. So
this can be done with

cdfX(a) =
1

6
⌊a/2⌋I(2 ≤ a ≤ 12) + I(a > 12).

153. SCALING A BETA

For T with pdfT (t) = 12t2(1 − t)I(t ∈ [0, 1]),
what is the pdf of 2T?

SOLUTION

Use the shifting and scaling formula for
continuous random variables.

f2T (t) =
1

2
fT (t/2)

= (12/2)(1/4)t2(1− t/2)I(t/2 ∈ [0, 1]),

and simplifying gives

f2T (t) = (3/2)t2(1− t/2)I(t ∈ [0, 1]).

155. SURVIVAL FUNCTION OF AN
EXPONENTIAL

For T ∼ 4 exp(−4t)I(t ≥ 0), what is the
survival function of T?

SOLUTION

The survival function is

surT (a) = 1− cdfT (a).

The cdf of an exponential is

0 · I(a < 0) + (1− exp(−4a))I(a ≥ 0),

so the survival function is

surT (a) = I(a < 0) + exp(−4a)I(a ≥ 0).

MEAN OF A RANDOM
VARIABLE

157. MEAN OF FINITE RANDOM
VARIABLES

If P(W = 1) = P(W = 2) = 0.13, and P(W =
4) = 0.74, what is E[W ]?

SOLUTION

This will be

(1)(0.13) + (2)(0.13) + (4)(0.74),

which is 3.350 .

159. MEAN OF A DISCRETE
UNIFORM

Suppose U ∼ Unif({0, 10, 100}). What is
E[U ]?

SOLUTION

Since U is uniform over three values, each
has a 1/3 chance of being the output.
Hence

E[U ] =
1

3
[0 + 10 + 100] =

110

3
,

which is about 36.66 .

161. MEAN OF A DIE ROLL

Suppose X ∼ d8. What is E[I(X ≤ 3)]?

SOLUTION

The mean of an indicator function is just
the probability of the event in the indicator
function. Here, that is 3/8, or 0.3750 .
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163. MEAN OF A DIFFERENCE

Suppose E[A] = 1.2 and E[B] = 6.3. What is
E[A−B]?

SOLUTION

By linearity, this is

E[A−B] = E[A]− E[B],

which is 1.2− 6.3, or −5.100 .

165. SYMMETRY OF A DISCRETE
UNIFORM

Suppose W is uniform over {−5, 0, 5}.
a. Show that W is symmetric around 0.
b. What is the expected value of W?

SOLUTION

a. Note W is uniform over {−5, 0, 5}, so −W
is uniform over {5, 0,−5}. But this is the
same set, so W and −W have the same
distribution!
b. Since W is symmetric around 0 (and has
an expected value), E[W ] = 0 .

167. VERTIGON’S ARMY

The Dark Lord Vertigon was believed to
have (with equal probability) a thousand,
six thousand, or eight thousand soldiers in
his army. What was the expected size of
Vertigon’s Army?

SOLUTION

Multiply each outcome times the
probability of that outcome and sum to get

E[A] = (1/3)(1000) + (1/3)(6000) + (1/3)(8000)

= 15000/3 = 5000 .

169. FOUR STORES

Pretty Polly’s Pet Store has four locations.
The first averages 200 customers a day,
the second averages 232, the third 330,
and the last 280. Altogether, what is the
total average number of customers at all of
the four stores per day?

SOLUTION

This will be

E[N ] =
1

4
(200) +

1

4
(232) +

1

4
(330) +

1

4
(280)

= 260.5 .

171. THE SLLN IN ACTION

Suppose that W has mean 2 and
W1,W2, . . . are iid W . What can be said
about

lim
n→∞

W1 + · · ·+Wn

n
?

By the Strong Law of Large numbers,
this is equal to E[W ] = 2 with probability
1.

MEAN OF A GENERAL
RANDOM VARIABLE

173. MEAN OF AN EXPONENTIAL

For W ∼ Exp(−2), set up the following
integrals.

a. E[W ].

b. E[W 2].

c. E[I(W < 3)]

SOLUTION

The density is fW (w) = 2 exp(−2)I(w ≥ 0).
Inside the integral, replace the random
variable with the index variable.

a. E[W ] =

∫
2w exp(−2w)I(w ≥ 0) dw

b. E[W ] =

∫
2w2 exp(−2w)I(w ≥ 0) dw

c.

E[I(W < 3)] =

∫
2 exp(−2w)I(0 ≤ w < 3) dw

175. MEAN OF FUNCTIONS OF A
CONTINUOUS UNIFORM

For a random variable T ∼ Exp(λ), so
fT (t) = λ exp(−λt)I(t ≥ 0), find E[T ].
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SOLUTION

This will be

E[T ] =
∫

tλ exp(−λt)I(t ≥ 0) dt

=

∫ ∞

0
t[− exp(−λt)]′ dt

= (t)(− exp(−λt))|∞0 −
∫ ∞

0
[t]′(− exp(−λt)) dt

= 0− 0− exp(−λt)

λ

∣∣∣∣∞
0

=
1

λ
.

Hence the result is 1/λ .

177. MONTE CARLO WITH
UNIFORMS

Using the function runif that generates
U ∼ Unif([0, 1]), write R code to estimate∫ 1

0

√
u du

using 106 samples.

SOLUTION

In R, use

u <- runif(10^6)
print(mean(u^(1 / 2)))

to get a result like 0.6666186 . Of course,
every time you run this code, you will get a
slightly different answer, because new
random uniforms are being generated each
time!

179. POLYNOMIALS OF
CONTINUOUS UNIFORMS

Let U ∼ Unif([0, 1]). Find E[(1− U)(1 + U)].

SOLUTION

This is

E[(1− U)(1 + U)] = E[1− U2]

=

∫
(1− u2)I(u ∈ [0, 1]) du

=

∫ 1

0
(1− u2) du

= (u− u3/3)|10
= 2/3,

which is about 0.6666 .

181. A NONINTEGRABLE DENSITY

Suppose X has density fX(x) = (4/τ)/(1 +
x2). Show that X is not integrable.

SOLUTION

Consider the integral

I =

∫ ∞

0
x

4/τ

1 + x2
dx

=

∫ ∞

0

4

τ
· 1
2
[ln(1 + x2)]′ dx

=
2

τ
[ lim
b→∞

ln(1 + b2)− 0]

= ∞.

This is not a finite value, and so the
random variable X is not integrable.

183. DERIVING FORMULAS

Suppose E[X] = µ. Prove that

E[(X − µ)2] = E[X2]− µ2.

SOLUTION

Proof. Expanding the square, and using
linearity of expectations,

E[(X − µ)2] = E[X2 − 2Xµ+ µ2]

= E[X2]− 2E[X]µ+ µ2

= E[X2]− 2µ2 + µ2

= E[X2]− µ2,

completing the proof.

CONDITIONAL
EXPECTATION

185. MEAN OF AN EXPONENTIAL

For W ∼ Exp(2), set up the following
integrals.
a. E[W ].
b. E[W 2].
c. E[I(W < 3)]

SOLUTION

The density is fW (w) = 2 exp(−2)I(w ≥ 0).
Inside the integral, replace the random
variable with the index variable.

a. E[W ] =

∫
2w exp(−2w)I(w ≥ 0) dw
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b. E[W ] =

∫
2w2 exp(−2w)I(w ≥ 0) dw

c.

E[I(W < 3)] =

∫
2 exp(−2w)I(0 ≤ w < 3) dw

187. MEAN OF FUNCTIONS OF A
CONTINUOUS UNIFORM

An exponential random variable T ∼ Exp(λ)
has density fT (t) = λ exp(−λt)I(t ≥ 0). Find
E[T ].

SOLUTION

This will be

E[T ] =
∫

tλ exp(−λt)I(t ≥ 0) dt

=

∫ ∞

0
t[− exp(−λt)]′ dt

= (t)(− exp(−λt))|∞0 −
∫ ∞

0
[t]′(− exp(−λt)) dt

= 0− 0− exp(−λt)

λ

∣∣∣∣∞
0

=
1

λ
.

Hence the result is 1/λ .

189. MONTE CARLO WITH
UNIFORMS

Using the function runif that generates
U ∼ Unif([0, 1]), write R code to estimate∫ 1

0

√
u du

using 106 samples.

SOLUTION

In R, use

u <- runif(10^6)
print(mean(u^(1 / 2)))

to get a result like 0.6666186 . Because
this code uses random numbers, every
time you run this code you will get a
slightly different result!

191. POLYNOMIALS OF
CONTINUOUS UNIFORMS

Let U ∼ Unif([0, 1]). Find E[(1− U)(1 + U)].

SOLUTION

This is

E[(1− U)(1 + U)] = E[1− U2]

=

∫
(1− u2)I(u ∈ [0, 1]) du

=

∫ 1

0
(1− u2) du

= (u− u3/3)|10
= 2/3,

which is about 0.6666 .

193. A NONINTEGRABLE DENSITY

Suppose X has density fX(x) = (4/τ)/(1 +
x2). Show that X is not integrable.

SOLUTION

Note that

E[X] =

∫ ∞

0
x

4/τ

1 + x2
dx

=

∫ ∞

0

4

τ
· 1
2
[ln(1 + x2)]′ dx

=
2

τ

[
lim
b→∞

ln(1 + b2)− 0

]
= ∞.

Therefore, the random variable is not
integrable.

JOINT DENSITIES OF
RANDOM VARIABLES

195. JOINT DENSITIES

Suppose (X,Y ) have joint density

f(X,Y )(x, y) = (x2 + xy)I((x, y) ∈ [0, 1]× [0, 1]).

a. Find P(X ≤ 0.4, Y ≤ 0.3).

b. Find the density of X, fX .

c. Are X and Y independent?

SOLUTION

The density to the rescue!
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a. Using Tonelli’s theorem,

p = P(X ≤ 0.4, Y ≤ 0.3)

=

∫ 0.4

x=−∞

∫ 0.3

y=−∞
(x2 + xy)I((x, y) ∈ [0, 1]× [0, 1] dy dx

=

∫ 0.4

x=0

∫ 0.3

y=0
(x2 + xy) dy dx

=

∫ 0.4

x=0
(x2y + xy2/2)

∣∣0.3
0

dx

=

∫ 0.4

x=0
0.3x2 + 0.045x dx

= 0.1x3 + 0.0225x2
∣∣0.4
0

,

which comes out to be 1% .

197. INDEPENDENCE

Let X with density fX(s) = exp(−2s)I(s ≥ 0)
and Y with density fY (r) = 2rI(r ∈ [0, 1])
be independent random variables. What is
the joint density

f(X,Y )(s, r)?

SOLUTION

Because the random variables are
independent, the joint density is the
product of the individual densities.

f(X,Y )(s, r) = 2r exp(−2s)I(s ≥ 0, r ∈ [0, 1]) .

199. DISCRETE JOINT DENSITIES

Suppose (X,Y ) are uniform over the four
points (−1, 1), (−1,−1), (0, 0), (1, 2).
a. What is the density of X?
b. What is the density of Y ?
c. Are X and Y independent?

SOLUTION

a. To find the density of X, integrate out Y :

fX(x) =
∑

y∈{−1,0,1,2}

f(X,Y )(x, y)

For x = −1, there are two y values, 1 and
−1. Hence

fX(−1) = (1/4) + (1/4) = (1/2)

For x = 0 and x = 1, there is exactly one y
value that goes along with them, so

fX(0) = fX(1) = 1/4.

This makes the density fX(x) equal to

1

2
I(x = −1) +

1

4
I(x = 0) +

1

4
I(x = 1) .

b. To find the density of Y , integrate out the
X:

fY (y) =
∑

x∈{−1,0,1,2}

f(X,Y )(x, y)

For each y value in −1, 0, 1, 2, there is
precisely one x value with density 1/4.
Hence

fY (y) =
1

4
I(y ∈ {−1, 0, 1, 2}) .

That makes the distribution of Y equal
to Unif({−1, 0, 1, 2}).
c. Note

fX(−1)fY (−1) = (1/2)(1/4) = 1/8,

but

f(X,Y )(−1,−1) = 1/4.

Since these are different, X and Y are
not independent .

201. FACTORING CONTINUOUS
DENSITIES

Suppose
f(X,Y )(x, y) = I(x ∈ [0, 2]) exp(−2y)I(y ≥ 0).
Show that X and Y are independent.

SOLUTION

Note that the joint density factors into

f(X,Y )(x, y) = [I(x ∈ [0, 2])][exp(−2y)I(y ≥ 0)]

which is the product of a piece that only
depends on x and a piece that only
depends on y. Hence the random variables
are independent.
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203. DEPENDENT JOINT
CONTINUOUS UNIFORMS

Suppose X = (X1, X2) is uniform over the
upper half of the unit circle given by

A = {(x1, x2) : x2 ≥ 0, x21 + x22 ≤ 1}.

Since Leb(A) = τ/2, this has density

f(X1,X2)(x1, x2) =
2

τ
I({(x1, x2) ∈ A).

Show that X1 and X2 are not
independent.

SOLUTION

If X2 ≥ 1/2, then |X1| ∈ [−
√
3/2,

√
3/2] with

probability 1, and so

P(|X1| ≤
√
3/2, X2 ≥ 1/2) = P(X2 ≥ 1/2).

On the other hand, P(|X1| >
√
3/2) > 0

since the area of this region is nonzero.
Hence

P(|X1| ≤
√
3/2, X2 ≥ 1/2) ̸=

P(|X1| >
√
3/2)P(X2 ≥ 1/2).

Since the probability of the logical AND
does not equal the product of the
probabilities, the random variables are
not independent.

RANDOM VARIABLES AS
VECTORS

205. RULES OF INNER PRODUCTS

Say cov(X,Y ) = 4.2. Find cov(3X,−2Y ).

SOLUTION

Factoring constants out of the covariance
gives

cov(3X,−2Y ) = (3)(−2) cov(X,Y ) = −6 · 4.2,

which is −25.20 .

207. RULES OF INNER PRODUCT
NORMS

Suppose that SD(X) = 1.8.
a. What is the variance of X?
b. What is SD(3X)?

c. What is SD(−3X)?

SOLUTION

a. This is the standard deviation squared,
which is 3.240 .
b. Here SD(3X) = 3SD(X), or 5.400 .
c. Here SD(−3X) = -3SD(X), or 5.400 .

209. STANDARD DEVIATION OF
DISCRETE RANDOM VARIABLES

Say X is discrete with density fX(−1) = 0.6,
fX(0) = 0.3, fX(1) = 0.1.
a. Find E[X].
b. Find SD(X).

SOLUTION

a. This is

E[X] = (−1)(0.6) + (0)(0.3) + (1)(0.1),

so −0.5000 .
b. For this, it is necessary to find E[X2]:

E[X2] = (−1)2(0.6) + (0)2(0.3) + (1)2(0.1) = 0.7,

and so SD(X) =
√
E[X2]− E[X]2, which is

about 0.6708 .

211. COVARIANCE OF A JOINT
UNIFORM

Let (X,Y ) be uniform over the triangle with
vertices (0, 0), (0, 1), and (1, 0). Find
cov(X,Y ).

SOLUTION

The triangle with vertices (0, 0), (0, 1), and
(1, 0) can be defined using the inequalities
corresponding to the three sides:

T = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}.

This triangle has area 1/2.
Hence

E[XY ] =

∫
R2

xy
I(x ≥ 0, y ≥ 0, x+ y ≤ 1)

1/2
dR2

= 2

∫ 1

x=0

∫ 1−x

y=0
xy dy dx

= 2

∫ 1

x=0
xy2/2|1−x

0 dx

=

∫ 1

x=0
x(1− x)2 dx

=
Γ(2)Γ(3)

Γ(2 + 3)
=

1!2!

4!
=

1

12
.
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Similarly,

E[X] =

∫
R2

x
I(x ≥ 0, y ≥ 0, x+ y ≤ 1)

1/2
dR2

=

∫ 1

x=0

∫ 1−x

y=0
2xy dy dx

=

∫ 1

x=0
2x(1− x) dx

= 2
Γ(2)Γ(2)

Γ(2 + 2)
= 2

1!1!

3!
=

1

3
,

and

E[Y ] =

∫
R2

y
I(x ≥ 0, y ≥ 0, x+ y ≤ 1)

1/2
dR2

=
1

3
,

as well.
Hence cov(X,Y ) = 1/12− (1/3)(1/3) = (3−

4)/36 = −1/9, or about −0.02777 .

d. Find cov(S, T ).

CORRELATION

215. AFFINE TRANSFORMS

Suppose X and Y have correlation 0.4276.
What is the correlation between 2X + 4 and
5Y + 3?

SOLUTION

Note that SD(2X + 4) = 2SD(X),
SD(5Y + 3) = 5SD(Y ), and
cov(2X + 4, 5Y + 3) = (2)(5) cov(X,Y ). Hence

cor(2X+4, 5Y+3) =
(2)(5) cov(X,Y )

2 SD(X)5 SD(Y )
= cor(X,Y ),

so the correction of the scaled and shifted
random variables remains 0.4276 .

217. CORRELATION OF DISCRETE
UNIFORMS

For (X,Y ) ∼ Unif({(0, 0), (2, 0), (2, 1)}), find
the correlation between X and Y .

SOLUTION

Because there are three points in the set,
each has 1/3 chance of occurring. Hence

E[X] =
1

3
(0) +

1

3
(2) +

1

3
(2) =

4

3

E[X2] =
1

3
(0)2 +

1

3
(2)2 +

1

3
(2)2 =

8

3

E[Y ] =
1

3
(0) +

1

3
(0) +

1

3
(1) =

1

3

E[Y 2] =
1

3
(0)2 +

1

3
(0)2 +

1

3
(1)2 =

1

3

E[XY ] =
1

3
(0)(0) +

1

3
(2)(0) +

1

3
(2)(1) =

2

3
.

Hence

cor(X,Y ) =
cov(X,Y )

SD(X) SD(Y )

=
E[XY ]− E[X]E[Y ]√

E[X2]− E[X]2
√
E[Y 2]− E[Y ]2

=
(2/3)− (4/3)(1/3)√

8/3− (1/3)2
√
1/3− (1/3)2

,

which is 0.2948 .

219. UNDERSTANDING
FUNCTIONS

Suppose U ∼ Unif([0, 1]). Find cor(U,U2).

SOLUTION

By symmetry:

E[U ] =
0 + 1

2
=

1

2
,

by integrating

E[U2] =

∫ 1

0
u2 du =

1

3
u3
∣∣∣∣1
0

=
1

3
.

Again by integrating

E[U · U2] =

∫ 1

0
u3 du =

1

4
.

Similarly,

E[(U2)2] = E[U4] =
1

5
.

Hence the correlation is

cor(U,U2) =
(1/4)− (1/2)(1/3)√

(1/3)− (1/2)2
√

(1/5)− (1/3)2

which is about 0.9682 .
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221. THE PYTHAGOREAN
THEOREM

Suppose S, T,R are independent random
variables with variances of 1.1, 2.8, 0.6
respectively.
a. What is var(S + T +R)?
b. What is var(S − 2T )?

SOLUTION

a. Because they are independent, this is
1.1 + 2.8 + 0.6, or 4.500 .
b. If S and T are independent, S and −2T
are as well. Hence this is

var(S) + (−2)2 var(T ),

which is 12.30 .

223. SAMPLE AVERAGES

Suppose X has standard deviation 3.2.
What is the standard deviation of
(X1 + · · ·+X100)/100 if the Xi are iid X?

SOLUTION

This is SD(X)/
√
100, or 0.3200 .

Suppose Y has standard deviation 0.4.
How big does n need to be for the standard
deviation of (Y1 + · · · + Yn)/n to be at most
0.01?

ADDING RANDOM
VARIABLES

225. ADDING RANDOM
VARIABLES

Suppose (X,Y ) ∼ Unif({(1, 2), (1, 3), (2, 2)}).
What is the density of X + Y ?

SOLUTION

Note that P(X+Y = 3) = 2/3, and P(X+Y =
4) = 1/3. So the density of X + Y is

fX+Y (s) =
2

3
I(s = 3) +

1

3
I(s = 4).

227. ADDING INDEPENDENT DICE

Suppose A ∼ d4 and B ∼ d4 are
independent. Use the convolution of the
densities of A and B to find the density of
A+B.

SOLUTION

The convolution of the densities of A and B
gives

fA+B(s) =

∫
a
fA(a)fB(s− a) d#

=
∑
a

fA(a)fB(s− a)

=
∑
a∈Z

1

4
I(1 ≤ a ≤ 4)

1

4
I(1 ≤ s− a ≤ 4)

=
∑
a∈Z

1

4
I(1 ≤ a ≤ 4)

1

4
I(s− 4 ≤ a ≤ s− 1)

=
1

16

∑
a

I(max(1, s− 4) ≤ a ≤ min(4, s− 1)).

This is 0 if s− 1 < 1 (so s < 2) or s− 4 > 4 (so
s > 8). If s ∈ {2, . . . , 8}, then this is

min(4, s− 1)−max(1, s− 4) + 1,

which if s−4 > 1 is 4− (s−4)+1 = 9− s, and
if s− 4 < 1 it is s− 1− 1 + 1 = s− 1.

Putting this all together gives

fA+B(s) =
s− 1

16
I(s ∈ {2, 3, 4}) +

9− s

16
I(s ∈ {5, 6, 7, 8}).

229. ADDING CONTINUOUS
RANDOM VARIABLES

Suppose A ∼ Unif([0, 1]) and B ∼ Exp(1).
What is the density of A+B?

SOLUTION

Find the convolution of the densities of A
and B:

fA+B(s) =

∫
a
fA(a)fB(s− a) ds

=

∫
a
I(a ∈ [0, 1]) exp(−(s− a))I(s− a ≥ 0) da

=

∫
a
I(0 ≤ a ≤ 1)I(a ≤ s) exp(−(s− a)) da.

If s < 0, the indicators will always be empty.
If s ∈ [0, 1], then a runs from 0 up to s. If
s > 1, then a runs from 0 up to 1. So for
s ∈ [0, 1],

fA+B(s) =

∫ s

a=0
exp(−(s− a)) da

= exp(−(s− a))|s0
= 1− exp(−s).
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For s > 1,

fA+B(s) =

∫ 1

a=0
exp(−(s− a)) da

= exp(−(s− a))|10
= exp(−s+ 1)− exp(−s)

= exp(−s)[e− 1].

Hence the complete density is

fA+B(s) =[1− exp(−s)]I(s ∈ [0, 1])+

exp(−s)[e− 1]I(s > 1).

231. GENERATING FUNCTION OF
A POISSON

Suppose X ∼ Pois(µ). Prove that the
generating function of X is exp(−µ(1− x)).

SOLUTION

Recall that for X ∼ Pois(µ),

P(X = i) =
exp(−µ)µi

i!
I(i ∈ {0, 1, 2, . . .}).

Hence

gfX(x) = E[xX ]

=
∞∑
i=0

xi exp(−µ)µi/i!

=
∞∑
i=0

exp(−µ)[xµ]i/i!

= exp(−µ) exp(xµ),

= exp(−µ(1− x)),

which completes the proof. □

233. WOLFRAM ALPHA TO THE
RESCUE

Suppose X1, . . . , X10 are iid d4. Then using
Wolfram Alpha to perform the polynomial
multiplications, find the probability that
X1 + · · ·+X10 = 23.

SOLUTION

Typing

expand ((1/4)*(x+x^2+x^3+x^4))^10

into Wolfram Alpha gives a x23 term of
(50055/524288)x23, hence the probability is
about 0.09547 .

THE CENTRAL LIMIT
THEOREM

235. CLT FOR EXPONENTIALS

Suppose T1, T2, . . . , T18 are iid Exp(3.4).
Estimate P(T1 + · · · + T18 ≥ 6) using the
Central Limit Theorem.

SOLUTION

First calculate the mean and variance of
the Ti: E[Ti] = 1/3.4 and var(Ti) = 1/3.42.
Then

p = P(T1 + · · ·+ T18 ≥ 6)

= P(T1 + · · ·+ T18 − 18/3.4 ≥ 6− 18/3.4)

= P(T1 + · · ·+ T18 − 18/3.4 ≥ 6− 18/3.4)

= P

(
T1 + · · ·+ T18 − 18/3.4√

18/3.42
≥ 6− 18/3.4√

18/3.42

)
≈ P(Z ≥ 0.5656854),

which is 0.2858 .

237. CLT FOR GEOMETRICS

Suppose T1, T2, . . . , T18 are iid Geo(0.2).
Estimate P(T1 + · · · + T18 ≥ 100) using the
Central Limit Theorem and the half-integer
correction.

SOLUTION

The mean of the Ti is 1/0.2 = 5, and the
variance is (1− 0.2)/(0.2)2 = 20. So

p = P(T1 + · · ·+ T18 ≥ 100)

= P(T1 + · · ·+ T18 ≥ 99)

= P(T1 + · · ·+ T18 − 18 · 5 ≥ 99− 18 · 5)

= P
(
T1 + · · ·+ T18 − 18 · 5√

18 · 20
≥ 99− 18 · 5√

18 · 20

)
≈ P(Z ≥ 0.4743416),

which is about 0.3176 .

239. ANOTHER EXPONENTIAL
CLT
Suppose T1, . . . , T10 are iid Exp(1.4).
Estimate P(T1 + · · ·+ T10 ≥ 9).
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SOLUTION

First standardize the sum inside the
probability. For S = T1 + · · ·+ T10,

P(S ≥ 9) = P(S − 10 · (1/1.4) ≥ 9− 10/1.4)

= P
(
S − 10 · (1/1.4)√

10(1/1.4)
≥ 9− 10/1.4√

10(1/1.4)

)
≈ P(Z ≥ 0.8221922),

which is 0.2054 .

NORMAL RANDOM
VARIABLES

245. SHIFTING AND SCALING
NORMALS

Suppose W ∼ N(34, 20). Then write P(W ≤
28) in terms of cdfZ where Z ∼ N(0, 1).

SOLUTION

Recall W ∼ 34 +
√
20Z, so

P(W ≤ 28) = P(34 +
√
20Z ≤ 28)

= P(
√
20Z ≤ −6)

= P(Z ≤ −6/
√
20),

hence P(W ≤ 28) equals cdfZ(−1.341) .

247. ADDING INDEPENDENT
NORMALS

If Z1 ∼ N(2.4, 5.2) and Z2 ∼ N(−1.2, 5.2) are
independent, what is the distribution of Z1+
Z2?

SOLUTION

The sum of normals is itself a normally
distributed random variable. Sum the
means and variances to get the new mean
and variance. So Z1 + Z2 ∼ N(1.2, 10.4) .

249. MULTIVARIATE SCALING
AND SHIFTING

Suppose that (Z1, Z2) are iid standard
normal random variables, and

W1 = 3Z1 − Z2 + 3

W2 = −2Z1 + Z2 − 4.

What is the distribution of (W1,W2)?

SOLUTION

The family of distributions is Multinormal,
now to find the parameters. The mean of
(W1,W2) is (3,−4), and the covariance
matrix is(

3 −2
−1 1

)(
3 −1
−2 1

)
=

(
13 −5
−5 2

)
Hence(
W1

W2

)
∼ Multinormal

((
3
−4

)
,

(
13 −5
−5 2

))

BAYES RULE FOR
DENSITIES

251. ARCHYTAS MEDICAL

Archytas Medical Group believes a new
drug has p chance of working, where p is a
random variable with density
fp(a) ∼ Beta(2, 3). They test the drug on five
animals, three of whom show that the drug
works. What is the posterior distribution
on p given this information?

SOLUTION

The prior density is

fp(a) = C1a(1− a)2I(a ∈ [0, 1]).

Let N denote the number of successes.
Then the density of N gives p = a at 3 is

fN |p=a(3) = C2a
3(1− a)2.

The product of these two is proportional to
the posterior:

fp|N=3 = C3a
4(1− a)4I(a ∈ [0, 1]).

Hence [p | N = 3] ∼ Beta(5, 5)) .

253. TOOTHPASTE TROUBLES

A factory produces 980 tubes of toothpaste
in a day. The chance that any tube is
defective is 0.001.
a. What is the chance that no tubes of
toothpaste are defective?
b. What is the chance that at least two
tubes of toothpaste are defective?
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SOLUTION

Let D be the number of defective tubes.
Then

D ∼ Bin(980, 0.001).

a. The probability a binomial is 0 is

P(D = 0) =

(
980

0

)
(0.001)0(0.999)980.

Note that 980 choose 0 is 1 (there is only
one way for all 980 trials to be a failure)
and so the answer is about 0.3751 .
b. Using the complement rule:

P(D ≥ 2) = 1− P(D ≤ 1)

= 1− P(D = 0)− P(D = 1)

= 1− 0.999980 −
(
980

1

)
(0.001)1(0.999)979

= 1− 0.999980 − 980(0.001)1(0.999)979

= 0.2568 . . . ,

so the answer is 0.2568 .

255. RONCO SURVEY GROUP

Ronco Survey Group knows that the
chance of someone answering their phone
and doing a survey is 4%. How many
people do they have to call in order to
make sure that the probability that they
get at least 10 survey takers is at least 70

SOLUTION

Start with n = 10/0.04 = 250:

1 - pbinom(9, 250, 0.04)

## [1] 0.544631

Too small. Try n = 300.

1 - pbinom(9, 300, 0.04)

## [1] 0.762957

Too big! Continue to narrow in on the
right number until

1 - pbinom(9, 283, 0.04)

## [1] 0.6980266

and

1 - pbinom(9, 284, 0.04)

## [1] 0.7021327

indicate that 284 is the correct result.

257. DIMER MEDICINE

Dimer Medicine creates 3 types of drugs
for a particular illness. The first is effective
in 50% of patients, the second in 37%, and
the third in 5%. Let A denote the event
that the drug is effective and X ∈ {1, 2, 3}
the drug that is given to the patient.
a. If a patient is equally likely to receive any
of the three drugs, find the probability that
both drug 1 is administered and it is
effective.
b. If a patient is equally likely to receive any
of the three drugs, what is the probability
that the drug is effective on their illness?
Hint: the event A is the disjoint union of
three pieces.

A = (A∩{X = 1})∪(A∩{X = 2})∪(A∩{X = 3}).

c. If the drug is effective for the patient,
what is the probability that the drug was of
the third type.

SOLUTION

a. Let X be the type of drug administered 1,
2, or 3, and let A denote the event that the
drug is effective. Since each patient is
equally likely to receive any of the drugs,
P(X = 1) = 1/3. Also P(A | X = 1) = 0.5.
Hence

P(A,X = 1) = P(X = 1)P(A | X = 1) = (1/3)(0.5)

which is 0.1666 .
b. Per the hint, break the event into three
disjoint pieces:

A = {A,X = 1} ∪ {A,X = 2} ∪ {A,X = 3}.

Then finding the probability of each piece
as in part (a) gives

P(A) = (0.5)/3 + (0.37)/3 + (0.05)/3

= 0.92/3

which is 0.3066 .
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c. Bayes’ Rule!

P(X = 3 | A) = P(A | X = 3) · P(X = 3)

P(A)

= 0.05 · 1/3

0.92/3
=

0.05

0.92
.

which is 0.05434 .

259. THE ASSEMBLY LINE

A consultant models the probability p that
an item is defective on an assembly line as
being uniform over the set
{0, 0.01, 0.02, 0.03, 0.04, 0.05}. After testing
100 items that are believed to be
independently defective or not defective, 4
are found to be defective. What is the
distribution of p conditioned on this
information?

SOLUTION

Let N denote the number of defective
items. Then

[N | p] ∼ Bin(100, p).

Let α ∈ {0, 0.01, . . . , 0.05}. Letting r be the
result that we are looking for, Bayes’ Rule
gives

r = P(p = α | N = 4)

= P(N = 4 | p = α)
P(p = α)

P(N = 4)

= Cα4(1− α)100−4I(α ∈ {0, 0.01, . . . , 0.05}).

Since probabilities must add to 1,

C
∑

α∈{0,0.01,...,0.05}

α4(1− α)96 = 1,

which gives C = 6002306.
Hence the full posterior distribution is:

P(p = α | N = 4) = 6002306α4(1− α)96,

which leads to the following table.

P(p = 0.00 | N = 4) = 0

P(p = 0.01 | N = 4) = 0.02287 . . .

P(p = 0.02 | N = 4) = 0.1380 . . .

P(p = 0.03 | N = 4) = 0.2611 . . .

P(p = 0.04 | N = 4) = 0.3052 . . .

P(p = 0.05 | N = 4) = 0.2726 . . .

261. RUSH HOUR

In a particular county during rush hour,
80% of cars contain one occupant, 10%
contain 2, 5% contain 3, and 5% contains
4 or more.

Any car containing two or more
occupants has a 90% chance of using the
carpool lane, and 1% of cars containing
only one occupant cheat and use the
carpool lane.

Suppose a car is in the carpool lane.
Given this information, what is the
probability that the car contains 1, 2, 3, or
4+ occupants?

SOLUTION

Let N ∈ {1, 2, 3, 4+} be the number of
people in the car. Then from the
information in the problem

P(N = 1) = 0.8

P(N = 2) = 0.1

P(N = 3) = 0.05

P(N = 4+) = 0.05

Let HOV be the event that the car uses the
carpool (the high-occupancy-vehicle or
HOV) lane. Then

P(N = 1, HOV ) = (0.8)(0.01)

P(N = 2, HOV ) = (0.1)(0.9)

P(N = 3, HOV ) = (0.05)(0.9)

P(N = 4+, HOV ) = (0.05)(0.9)

Adding these numbers gives 0.188. Hence
Bayes’ Rule gives

P(N = 1 | HOV ) = (0.8)(0.01)(0.188)−1

P(N = 2 | HOV ) = (0.1)(0.9)(0.188)−1

P(N = 3 | HOV ) = (0.05)(0.9)(0.188)−1

P(N = 4+ | HOV ) = (0.05)(0.9)(0.188)−1

Putting this to 4 sig figs gives

P(N = 1 | HOV ) = 0.04255

P(N = 2 | HOV ) = 0.4787

P(N = 3 | HOV ) = 0.2393

P(N = 4+ | HOV ) = 0.2393

CHAPTER 30: ENCOUNTERS RESOLVED153



THE MULTINOMIAL
DISTRIBUTION

263. PROBABILITIES FOR
MULTINOMIALS

If (X1, X2, X3, X4) ∼
Multinomial(10, 0.3, 0.5, 0.1, 0.1), what is the
chance that (X1, X2, X3, X4) equals
(3, 5, 1, 1)?

SOLUTION

Using the density formula, this is

f(X1,...,X4)(3, 5, 1, 1) =

(
10

3, 5, 1, 1

)
0.330.550.110.11,

which is about 0.04252 .

265. MEANS OF MULTINOMIALS

If (X1, X2, X3, X4) ∼
Multinomial(10, 0.3, 0.5, 0.1, 0.1), what is
E[(X1, X2, X3, X4)]?

SOLUTION

Marginally, each Xi is binomial with
parameters 10 and (0.3, 0.5, 0.1, 0.1), so the
mean of the vector is:

E[(X1, X2, X3, X4)] = (3, 5, 1, 1).

267. MULTINOMIAL COVARIANCE

If (X1, X2, X3, X4) ∼
Multinomial(10, 0.3, 0.5, 0.1, 0.1), what is the
covariance matrix for (X1, X2, X3, X4)?

SOLUTION

Recall that var(Xi) = npi(1 − pi) and
cov(Xi, Xj) = −npipj for multinomials.
Hence the covariance matrix for this
problem is (factoring out the 10)

10

 (0.3)(0.7) −(0.3)(0.5) −(0.3)(0.1) −(0.3)(0.1)
−(0.5)(0.3) (0.5)(0.5) −(0.5)(0.1) −(0.5)(.1)
−(0.1)(0.3) −(0.1)(0.5) (0.1)(0.9) −(0.1)(0.1)
−(0.1)(0.3) −(0.1)(0.5) −(0.1)(0.1) (0.1)(0.9)


which evaluates to

2.1 −1.5 −0.3 −0.3
−1.5 2.5 −0.5 −0.5
−0.3 −0.5 0.9 −0.1
−0.3 −0.5 −0.1 0.9

 .

TAIL INEQUALITIES

269. MARKOV’S INEQUALITY

Suppose T ≥ 0 has E[T ] = 2.3. Upper bound
P(T ≥ 6).

SOLUTION

Since T ≥ 0, T = T . So by Markov’s
inequality,

P(T ≥ 6) ≤ E[T ]/6 = 2.3/6,

which is about 0.3833 .

271. CHEBYSHEV’S INEQUALITY

Suppose R has mean 12.2 and standard
deviation 4.3. Use Chebyshev’s inequality
to bound P(R ≤ 4).

SOLUTION

First put the problem in a form for
Chebyshev:

(R ≤ 4) = (R− 12.2 ≤ −8.2)

= (−(R− 12.2) ≥ 8.2)

→ (|R− 12.2| ≥ 8.2)

Applying Chebyshev then gives

P(R ≤ 4) ≤ P(|R− 12.2| ≥ 8.2)

≤ var(R)

8.22

=
4.32

8.22
,

which is at most 0.2750 .

273. CHEBYSHEV VIA STANDARD
DEVIATION

What is the largest chance possible that a
random variable is at least 3 standard
deviations away from its mean?

SOLUTION

This is at most (1/3)2, or at most 0.1112 to
four significant digits.

275. SAMPLE AVERAGES AND
CHEBYSHEV

Suppose N1, N2, . . . are iid N , where
E[N ] = 3.2 and SD(N) = 6.2. Let
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Sn = (N1 + · · ·+Nn)/n. How large must n be
in order for Chebyshev to upper bound
P(Sn < 0) by 0.2?

SOLUTION

Using Chebyshev

P (Sn ≤ 0) = P
(
Sn − 3.2

6.2
≤ 0− 3.2

6.2

)
≤ P

(∣∣∣∣Sn − 3.2

6.2

∣∣∣∣ ≥ 3.2

6.2

)
=

1

n(3.2/6.2)2
.

Setting 1/[n(3.2/6.2)2] ≤ 0.2 gives
n ≥ 18.76 . . ., so 19 .

277. CONSTRUCTION WOES

A building is believed to require 0.8 years
on average to complete, with a standard
deviation of 0.5 years. Give the best bound
(either Markov or Chebyshev) for the
following.
a. The building takes at least a year to
build.
b. The building takes at least two years to
build.

SOLUTION

Let C be the construction time of the
building. Then E[C] = 0.8 and SD(C) = 0.5.
a. Markov’s inequality gives

P(C ≥ 1) ≤ 0.8/1 = 80%.

Chebyshev’s inequality gives

P(C ≥ 1) = P(C − 0.8 ≥ 0.2) ≤ 0.52

0.22
,

so leaves 1 as the best bound. Hence the
best bound from this information is 80% .
b. Markov’s inequality gives

P(C ≥ 2) ≤ 0.8/2 = 40%.

Chebyshev’s inequality gives

P(C ≥ 2) = P(C−0.8 ≥ 1.2) ≤ 0.52

1.22
= 0.1736111 . . . ,

making the best upper bound 17.37% .

CHERNOFF
INEQUALITIES

279. CHERNOFF FOR POISSONS

For X ∼ Pois(21.3), use Chernoff’s
inequality to bound P(X ≥ 30).

SOLUTION

Using the result from earlier

P(X ≥ 30) ≤ exp(30− 21.3)/(30/21.3)30,

which is at most 0.2071 .

281. CHERNOFF FOR GAMMAS

Using t = 0.47 in Chernoff’s bound, give an
upper bound for R ∼ Gamma(13, 1.4) of
P(R ≥ 14).

SOLUTION

Let T1, . . . , T13 ∼ Exp(1.4). Then T1+· · ·+T13 ∼
R. Also,

mgfT1
(t) =

∫
s
exp(ts)λ exp(−λs)I(s ≥ 0) ds

=

∫
s≥0

λ exp(−s(λ− t)) ds

=
λ

λ− t

when t < λ. Hence for R ∼ Gamma(13, 1.4),

mgfR(0.47) =

(
1.4

1.4− 0.47

)13

and

P(R ≥ 14) ≤ (1.4/(1.4− 0.47))13

exp(0.47 · 14)
,

which is at most 0.2830 .

283. CHERNOFF GIVEN THE MGF

Suppose that X has
mgfX(0.2)/ exp(4(0.2)) ≤ 0.6, and X1, . . . , X10

are iid X. What is a bound on

P
(
X1 + · · ·+X10

10
≥ 4

)
?

SOLUTION

This is 0.610, or 0.006047 .
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285. CHERNOFF FOR UNIFORMS

For U1, . . . , Un iid Unif([0, 1]), consider

P ((U1 + · · ·+ U10) ≥ 6).

a. Use Wolfram Alpha to find the value of t
that minimizes the Chernoff bound for this
probability.
b. Find the best Chernoff bound for this
probability.

SOLUTION

The moment generating function of a
standard uniform is

mgfU (t) = E[exp(tU)]

=

∫
u
exp(tu)I(u ∈ [0, 1]) du

=

∫ 1

u=0
exp(tu) du

=

{
1 t = 0
et−1
t t ̸= 0.

For summing variables,

s = P(U1 + · · ·+ U10 ≥ 6)

= P((U1 + · · ·+ Un)/10 ≥ 0.6)

≤ [mgfU (t) exp(−0.6t)]10.

a. To minimize the Chernoff bound, ignore
the exponent of 10 and minimize

g(t) =
et − 1

t
exp(−0.6t) =

exp(0.4t)− exp(−0.6t)

t
.

Then the minimum is at about 1.229 .
b. Evaluating g at this t and raising to the
10th power gives an upper bound (to four
sig figs) of 0.5448 .

THE HYPERGEOMETRIC
DISTRIBUTION

287. THOSE CRAZY EIGHTS

In a standard 52 deck of cards, there are
four cards with rank 8 (the 8 of hearts, the
8 of spades, the 8 of diamonds, and the 8
of clubs).

If seven cards are dealt out uniformly at
random from the deck, what is the chance
that exactly two are rank 8?

SOLUTION

The number of cards of rank 8 will be
hypergeometric

[N7 | N52 = 4] ∼ HyperGeo(52, 7, 4)

Hence

P(N7 = 2 | N52 = 4) =

(
7
2

)(
52−4
4−2

)(
52
4

)
=

7!45!

2!5!2!43!
· 4!48!
52!

=
7 · 6 · 45 · 44 · 4 · 3
2 · 1 · 52 · 51 · 50 · 49

= 0.07679 . . . .

289. A BAG OF MARBLES

A bag contains five red and ten blue
marbles. If four marbles are selected at
random, what is the chance that exactly
three are red?

SOLUTION

From the first expression, k = 4, ℓ = 5, i =
3, n = 5 + 10 = 15. So

P(H = 3) =

(
4

3

)
53101

154
=

50

273
,

or about 0.07326 .

291. A BOX OF SCREWS

A box of screws contains 40 type A and 60
type B screws. If a group of 30 screws are
chosen uniformly at random from the box,
then what is the chance that the last screw
chosen is type A?

SOLUTION

Whether the first screw chosen or the last
screw chosen, this will be 40/100, or 40% .

293. THE MISSION

Three out of eight members of the Ranger’s
Guild are Wood Elves. If five of the
members are chosen for a secret mission
uniformly at random, what is the chance
that exactly two are Wood Elves?

CHAPTER 30: ENCOUNTERS RESOLVED 156



SOLUTION

The number of Wood Elves chosen is

C ∼ HyperGeo(8, 3, 5),

Then the probability that the first two
drawn are Wood Elves and the next three
are not will be

P(WWNNN) =
3

8
· 2
7
· 5
6
· 4
5
· 3
4
.

Outcome WWNNN gives C = 2, but so
does an outcome like WNWNN . In fact,
there are

(
5
2

)
such outcomes, so the final

answer is

P(C = 2) =
3

8
· 2
7
· 5
6
· 4
5
· 3
4
· 5
2
· 4
1

= 0.5357 . . .

295. THE FOREST

There are believed to be 20 deer in a forest.
During one survey, 5 of the deer are
tagged. During the second survey, 11 of
the deer are tagged. If the tagging of the
deer is random, let T be the number of
deer tagged twice.
a. What is E[T ]?
b. What is SD(T )?

SOLUTION

a. This is (5)(11)/20, or 2.750 .
b. This is

sqrt

(
2.75 · 4 · 10

20 · 19

)
,

or about 0.5380 .

MORE POISSON POINT
PROCESSES

297. BACK TO THE CELLAR

In the cellar from the story the space is a
polygon with vertices
(0, 0), (0, 12), (12, 12), (12, 2), (7, 2) and (7, 0).
a. what is the chance that there are at least
12 rats in the cellar?
b. Given a point that marks a rat’s location,
what is the chance that the point has
second coordinate at least 2?

c. What is the chance that there are no
points with second coordinate less than 2?

SOLUTION

a. The area of the cellar is 70 + 50 = 120.
The rate of rats is 0.1 per square foot.
Therefore, the number of rats in the cellar
is Poisson with mean 12.

So the question is asking, what is the
chance that a Poisson with rate 12 is at
least 12. Let N be the number of rats.
Then

P(N ≥ 12) =
∞∑

i=12

P(N = i).

To make this easier, use the complement
rule.

P(N ≥ 12) = 1− P(N < 12)

=
11∑
i=0

P(N = i)

=

11∑
i=0

exp(−12)12i

i!

= 0.5384 . . . .

b. This will be the area of the shaded part of
the cellar, divided by the total area of the
cellar.

The shaded area is 5 ·10+5 ·10 = 100 out of
120. Therefore, the chance of a point falling
into the area is

100

120
=

5

6
= 0.8333 . . . .
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c. The smaller region of area 10 forms its
own Poisson point process, with mean
(10)(0.1) = 1. So the chance of having X = 0
points in it is

exp(−1)
10

0!
= 0.3678 . . . .

299. THE RESTAURANT

Customers arrive to a restaurant at times
modeled by a Poisson point process of rate
15 per hour. If 10 customers arrive in the
first hour, what is the chance that exactly
5 customers arrive in the first half-hour?

SOLUTION

For the 10 customers that arrive, each has
a 1/2 chance of arriving in the first half
hour, because

Leb([0, 1/2])

Leb([0, 1]
=

1/2

1
= 1/2.

So the number of points that fall into the
smaller interval has a binomial
distribution with parameters 10 (because
there are 10 points total) and 1/2 (because
the chance of falling in the smaller interval
is 1/2.

That is,

[N[0,1/2] | N[0,1]] ∼ Bin(10, 1/2).

In particular, the chance that (N[0,1/2] =
5 | N[0,1]) will be

p =

(
10

5

)(
1

2

)5(
1− 1

2

)5

= 252/210 = 0.2460 . . . .

301. AN ABSTRACT SPACE

Suppose S is a space with measure µ(S) =
15.2. A set A ⊆ S has µ(A) = 11.4. Given
a point x ∈ S in the Poisson point process
of constant rate λ = 2.1 over S, what is the
chance that x ∈ A?

SOLUTION

This is a highly abstract problem,
fortunately it is not necessary to know
much about the space S to answer the
question. For instance, the dimension of S

is completely unknown, but that does not
affect the solution!

Because A has measure 11.4, the
chance that a point uniform over S lands
in A is just

11.4

15.2
= 0.7500 .

TRANSFORMING
MULTIVARIATE RANDOM
VARIABLES

303. ONE DIMENSIONAL
TRANSFORM

Suppose X has pdf (for x > 0)

fX(x) =
1

x
√
τ
exp(− log(x)2/2).

Let Y = log(X).
a. What is the density of Y ?
b. What is the distribution of Y ?

SOLUTION

Note [log(x)]′ = 1/x. Also, if y = log(x), then
x = exp(y). Hence

fY (y) = 1/(1/| exp(y)|)fX(exp(y))

= exp(y)
1

exp(y)
√
τ
exp(−y2/2)

=
1√
τ
exp(−y2/2).

a. The density of Y is

1√
τ
exp(−y2/2).

b. This is the density of a standard normal.
So Y ∼ N(0, 1) .

305. TWO DIMENSIONAL
TRANSFORM

Suppose f(x, y) = x2y. If X ∼ Unif([0, 1]) and
Y ∼ Unif([0, 1]), what is the density of S =
f(x2, y)?

CHAPTER 30: ENCOUNTERS RESOLVED 158



SOLUTION

In this case f takes two inputs and
returns one output. For our transform
method, if two inputs are taken two
outputs should be produced. Fortunately,
this is easy to fix. Simply create another
output to go along with the first! As long
as our transform is nontrivial, this will
work. For instance, one could use:

f1(x, y) = x2y

f2(x, y) = x

This could be combined into one
function F that says:

F (x, y) = (x2y, x).

Making (S,X) = F (X,Y ), and

J(x, y) =

(
2xy x2

1 0

)
,

and so the determinant is −x2 and |J | = x2

over the domain of [0, 1].
Then F−1(s, x) = (x, s/x2).
Therefore, the joint density is

f(S,X)(s, x) =
1

x2
I(x ∈ [0, 1], y ∈ [0, 1])

=
1

x2
I(x ∈ [0, 1], s ∈ [0, x2]).

To find the marginal density of x,
integrate out x.

fS(s) =

∫
x

1

x2
I(x ∈ [0, 1])I(s ∈ [0, x2]) dx

= I(s ∈ [0, 1])

∫ 1

x=
√
s

1

x2
dx

= I(s ∈ [0, 1])(−1/x)|1√s

= [s−1/2 − 1]I(s ∈ [0, 1]).

That is to say, the density is

fS(s) = [s−1/2 − 1]I(s ∈ (0, 1]).
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