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Abstract

For many probability distributions of interest, it is quite
difficult to obtain samples efficiently. Often, Markov chains
are employed to obtain approximately random samples from
these distributions. The primary drawback to traditional
Markov chain methods is that the mixing time of the chain
is usually unknown, which makes it impossible to determine
how close the output samples are to having the target dis-
tribution. Here we present a new protocol, the randomness
recycler (RR), that overcomes this difficulty. Unlike classi-
cal Markov chain approaches, an RR-based algorithm cre-
ates samples drawn exactly from the desired distribution.
Other perfect sampling methods such as coupling from the
past use existing Markov chains, but RR does not use the
traditional Markov chain at all. While by no means univer-
sally useful, RR does apply to a wide variety of problems. In
restricted instances of certain problems, it gives the first ex-
pected linear time algorithms for generating samples. Here
we apply RR to self-organizing lists, the Ising model, ran-
dom independent sets, random colorings, and the random
cluster model.

1 Introduction

The Markov chain Monte Carlo (MCMC) approach to
generating samples has enjoyed enormous success since its
introduction, but in certain cases it is possible to do bet-
ter. The “randomness recycler” technique we introduce here
(and whose name is explained in Section 2) works for a va-
riety of problems without employing the traditional Markov
chain. Our approach is faster in many cases, generating in
particular the first algorithms that have expected running
time linear in the size of the problem, under certain restric-
tions.
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In classical MCMC approaches, small random changes
are made in the observation until the observation has nearly
the stationary distribution of the chain. The Metropolis [13]
and heat bath algorithms utilize the idea of reversibility to
design chains with a stationary distribution matching the
desired distribution. Unfortunately, this standard Markov
chain approach does have problems.

The samples generated by MCMC will not be drawn
exactly from the stationary distribution, but only approxi-
mately. Moreover, they will not be close to the stationary
distribution until a number of steps larger than the mixing
time of the chain have been taken. Often the mixing time is
unknown, and so the quality of the sample is suspect.

Recently, Propp and Wilson have shown how to avoid
these problems using techniques such as coupling from the
past (CFTP) [15]. For some chains, CFTP provides a pro-
cedure that allows perfect samples to be drawn from the
stationary distribution of the chain, without knowledge of
the mixing time. However, CFTP and related approaches
have drawbacks of their own. These algorithms are non-
interruptible, which means that the user must commit to
running such an algorithm for its entire (random) running
time even though that time is not known in advance. Failure
to do so can introduce bias into the sample. Other algo-
rithms, such as FMMR [3], are interruptible (when time is
measured in Markov chain steps), but require storage and
subsequent rereading of random bits used by the algorithm.
The method we will present is both interruptible and “read-
once,” with no storage of random bits needed.

In addition, algorithms like CFTP and FMMR require an
underlying Markov chain, and can never be faster than the
mixing time of this underlying chain. Often these chains
make changes to parts of the state where the state has al-
ready been suitably randomized. This leads to wasted effort
when running the algorithm that often adds a log factor to
the running time of the algorithm.

The randomness recycler (RR) is not like any of these
perfect sampling algorithms. In fact, the RR approach aban-
dons the traditional Markov chain entirely. This is what
allows the algorithm in several cases to reach an expected
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running time that is linear, the first for several problems of
interest. The RR technique gives interruptible, read-once
perfect samples.

In the next section we illustrate the randomness recycler
for the problem of finding random independent sets of a
graph. After this example we present in Section 3 the gen-
eral randomness recycler procedure and present a (partial)
proof of correctness. In Section 4 we present other applica-
tions and in Section 5 we review the results of applying our
new approach to several different problems.

2 Weighted Independent Sets

We begin by showing how the randomness recycler tech-
nique applies to the problem of generating a random inde-
pendent set of a graph. This will illustrate the key features
of RR and lay the groundwork for the more general proce-
dure described in the next section.

Recall that an independent set of a graph is a subset of
vertices no two of which share an edge. We will represent
an independent set as a coloring of the vertices from {0, 1},
denoted generically by z. Set z(v) = 1 if v is in the inde-
pendent set, and z(v) = 0 if v is not in the independent set.
This implies that ), z(v) is the size of the independent set.

We wish to sample from the distribution

/\Zv z(v)

Zy
where A (called the fugacity) is a parameter of the prob-
lem, and Z) is the normalizing constant needed to make 7
a probability distribution.

This distribution is known as the hard core gas model
in statistical physics, and also has applications in stochastic
loss networks [11]. When A is large the sample tends to be
a large independent set, and if A > 25/A where A is the
maximum degree of the graph, it is known that generating
samples from this distribution cannot be done in polynomial
time unless NP = RP [1].

We will show that for A < 4/(3A — 4) the randomness
recycler approach gives an algorithm with expected running
time linear in the size of the graph, the first such result for
this problem.

The RR approach is to start not with the entire graph,
but rather with a small graph where we can easily find an
independent set from this distribution. For example, if a
graph has only a single vertex, finding an independent set
is easy. Starting from a single vertex, we attempt to add
vertices to the graph, building up until we are back at our
original problem. Sometimes we fail in our attempt to build
up the graph, and indeed will then also need to remove ver-
tices that we had previously added. The set V; will comprise
those vertices we have built up by the end of time step ¢. Af-
ter step ¢, the vector z; will hold an independent set which

n(z) =
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has the correct distribution over (the subgraph induced by)
the vertices in V;.

Randomness Recycler for Independent Sets

Set Vo 0,20 < 0,t <0
Repeat
Set Ti41 & Tt
Choose any v € V' \ V;
Set Viy1 - ViU {v}
Draw U uniformly at random from [0, 1]
KU <1/(1+2)
Letziy1(v) «+ 0
Else
Let T4 (’l)) +«~1
If a neighbor w of v has z;4+1(w) = 1
Let w be the lowest-numbered such neighbor
Set 7:11 (w) « 0, ze41(v) «+ 0
Remove from V;, the vertices v and w,
all neighbors of w, and all neighbors of v
with numbers less than that of w
Sett—t+1
Until V; =V

(In advance of running the algorithm, choose and fix a
numbering of the vertices.) The algorithm proceeds induc-
tively as follows. At the outset of step ¢ + 1, we begin with
an independent set x; of V; chosen with the correct prob-
ability. Then we choose a vertex v not in V; to attempt to
add. This vertex may be chosen in any fashion desired (ran-
domly, or according to some fixed order, but not depend-
ing on the independent set x;). Because the desired prob-
ability of choosing an independent set x is proportional to
/\E’”(”), putting ;41 (v) = 1 has A times the weight of
putting z:+1(v) = 0. Therefore we select z;41(v) = 1
with probability A/(1 + ) and x4, (v) = 0 with probabil-
ity 1/(1 + A) (these are the heat bath probabilities).

Unfortunately, the vector ;43 resulting from this selec-
tion may fail to correspond to an independent set. At line
11 of the pseudocode, we check whether some neighbor of v
was already colored 1 (in the independent set). Note that we
cannot simply remove v. Prior to the step, we knew that z;
was an independent set of V;. If we observe that z;(w) = 1
for some lowest-numbered neighbor w of v, then z; is an
independent set on V; conditioned on this knowledge.

Our solution is this: In line 14 we “undo” the knowledge
gained by removing from V34 the vertices v and w, all the
neighbors of w, and all the neighbors of v with number less
than that of w. On the remaining vertices of Vi1, &41 will
continue to be an independent set from the correct distribu-
tion. We will say that an RR step of this type preserves the
correct distribution.

Note that although V341 is made smaller than V; in the
case of a conflict, we are able to salvage most of the vertices




in V;. In other words, we “recycle” the randomness built up
in all of the vertices except v and w and some neighbors.
This is where our approach gets its name, and “recycling”
is the key new feature that enables us to contruct similar
practicable algorithms for a wide variety of problems.

We repeat until V; = V. Because each step preserves the
correct distribution, we know that z; will have the correct
distribution 7 at the end. This is proved formally in the next
section; here we concentrate on bounding the running time
of our procedure.

Theorem 1 If A < 1/(2A — 1), then the expected running
time of the above randomness recycling procedure for ran-
dom independent sets is O(n).

A more careful statement of Theorem 1 is given follow-
ing the proof.
Proof We will show that for A this small, on average |V|
increases at each step. If U < 1/(1 + A), then the size
of |V;| goes up by 1, but if U > 1/(1 + A), then the size
of |V;| may decrease by at most 2A — 1 {removing v (not
previously included), w, and some neighbors]. Hence

1 A
E[|Vig1]l — Vil | Ve, 2] 2> m(l)"m@A-l)
1

which is positive precisely when A < 1/(2A — 1). Given
an increase of |V;| on average at each step, standard mar-
tingale stopping theorems (see, e.g., [14]) show that after
O(n) expected time the value of |V;| will be n, at which
point V; = V and the algorithm terminates. O

More carefully, if

L [1-@A-1N 7€ (1),

1+
Agl/(ﬁ-—l),
1-7v

then the expected value of the running time 7" (measured by
number of iterations of the Repeat loop) satisfies

ie., if

ET < n/.

Furthermore, a simple argument shows that the distribution
of T has at worst geometrically thick tails:

P(T>22n) <27™, m=12,....

Several tricks may be used to either to improve our
method or to improve our bounds on its performance. The
first two we present work by altering the algorithm, and the
third gives a better analysis. First we concentrate on making
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sure that as few vertices as possible are removed in the re-
jection step. Note that we may assume that the graph is con-
nected, since otherwise we simply work on each connected
component separately. Therefore V' \ V; is connected, and
by being slightly careful in how we choose v € V' \ V;, we
can ensure that V' \ V; remains connected at each step. In
every step (except when |V \ V;| = 1), the vertex v is not
adjacent to A vertices in V4, but only to at most A — 1, so
fewer vertices are removed during rejection. Since the ver-
tices removed from V; in case of rejection are connected to
V\W;, V\ Vi41 will also be connected whether we accept or
reject, and no more than an extra constant amount of work
is required at each step.

The second alteration concerns how we look for the
neighbor of v that is colored 1 in case of rejection. Instead
of starting at the lowest numbered neighbor and working
our way up, we start at a random neighbor and continue
looking in cyclical order until we find our w colored 1; and
then the vertices that we remove are w and its neighbors
and v and its neighbors encountered in the search prior to
finding w. On average (and together with the first trick), we
need only look at < A /2 vertices in order to find w.

Finally, in our analysis we kept track of a potential
&(Vi,z¢) = |V;| and showed that ¢ increases on average.
When we accept we sometimes add a vertex colored 1 to
our set V;; but when we reject, precisely one vertex col-
ored 1 (namely, w) is removed. This suggests that we mod-
ify ¢ so that the acceptance and rejection phases both lead
(in the worst case) to the same expected change in ¢. We
will consider

$(Viz) = Vil — a3 2u(v)

and seek a suitable value of a. The expected change in ¢
if no neighbor of v is colored 1 is 1 — a[A/(1 + N)]. If
some neighbor is colored 1, then the expected change is at
least 1[1/(1+ A)] + (T;\-—A) [~ (3372) + a] . [The term
(3A — 2)/2 is an upper bound on the expected decrease
in |V4|, since (see above) on average we lose at most A/2
neighbors of v and A — 1 neighbors of w.]

These two expressions may be made equal by setting
a = 3A /4, and then the expected change in ¢ will be posi-

tive when
4

3A -4

Note that ¢ at time 0 equals 0, and can never be more
than n, and we have shown that ¢ is expected to increase
by a fixed positive amount at each step (when we formulate
carefully as in the paragraph following the proof of Theo-
rem 1). This fact together with standard martingale stop-
ping theorems can then be used to show that the expected
time needed for |V}| to equal n is at most linear in n.

AL
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2.1 Markov chain approaches

Several Markov chains for this problem exist [12] [2],
together with techniques for using CFTP to obtain per-
fect samples [6] [7]. These Markov chains are known to
mix in time O(nlnn), and the corresponding perfect sam-
pling algorithms are known to run in time O(n lnn), when
A < 2/(A—2), which is a larger range of A than our method
gives. However, when A is small enough, the O(n) bound
for our RR algorithm is smaller. It is hoped that with fur-
ther refinement of the rejection step, the range of A may be
increased to where it matches the Markov chain analysis.

3 The Randomness Recycler

We now present a more general outline of the random-
ness recycler technique. Many state spaces (2 of interest are
of the form Q C CY, where CV is the set of (proper or
improper) colorings of a graph. Our goal is to sample from
) in expected time linear in |V'|. We have already seen how
the independent sets of a graph may be encoded by color-
ing a vertex 1 if it is in the indpendent set and 0 otherwise.
For another example, the set of permutations of n elements
is a subset of {1,...,n}{L"} Of course, the size of Q
may be as large as |C]!V!, and this is in part what makes
generating samples from these distributions difficult.

The Randomness Recycler (Outline)

Set Vo + 0, X « suitable 2o, t < 0
Repeat
Set XH—I +— X
Choosev € V' \ V;
Randomly choose color ¢ for v
Compute probability of accepting color ¢ for v
If we accept
Set X411 (v) + ¢
Set Vi1 « ViU {v}
Else
Set Vi1 and Xi41]v\v,,, in a way that
‘undoes’ the effect of rejection
Sett+—t+1
Until V; =V

In an RR algorithm, a sample (i.e., one draw from 7) is
built up one vertex of V' at a time until we include all of the
vertices. Let V; be the subset of vertices on which we have
already built up a sample at time ¢. On the vertices in V'\ V4,
the sample is fixed at some value, whereas on V;, the sample
is random, and drawn exactly from the desired distribution.
V; starts out empty, and at each step of the algorithm we
attempt to add a vertex to V;. Sometimes this is possible,
and sometimes it is not. We continue in this fashion until
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V; = V, at which point we have a sample drawn exactly
from the desired distribution. Let X; denote the coloring of
the graph V at time ¢.

The way in which we randomly choose ¢, compute the
acceptance probability, and set Viy; and Xivaly\v,,, in
case of rejection will all depend on the target distribution 7.
What differentiates this algorithm from an elementary step-
wise rejection approach is our rejection step. Rather than
starting over when rejection is faced, we keep as much of
V; as possible, “recycling” the coloring on Vp4;.

At each time step t we keep track of the vertex set V;
together with the colors that are fixed on V' \ V;. The state
X is random over V; while on V' \ V; it is deterministic.
Let X} = (W, Xt|v\v;), and for any possible value z* =
(S, zly\s) of X¢, let m,+ be m conditionally given that the
colors of V' \ § are as specified by z|y\s.

To achieve both the desired distribution and interrupt-
ibility, we want X} to be random over V; independent of the
history X}, for t' < t. In other words we want the identity

¢y

to hold. Indeed, if it does, then letting 7" denote the first
time that Vp = V/, it follows easily that

P(Xt = z|T =t) = n(x).

P(Xy = z¢| X5 = xg,..., X{ = x}) = 7z (z2),

Thus if (1) is satisfied for all ¢, then at termination time T'
the RR algorithm returns a sample X that is distributed
according to the desired distribution, and we have the inter-
ruptibility property that T and Xt are independent random
variables.

Since V) is empty, it is easy to begin with X from Tgy-
Let H; := (Xg = =3, X{ = z3,...,X{ = z}) for nota-
tional convenience. We will say that step t + 1 preserves the
correct distribution if

P(X; = z4|Hy) = 7x; (z4)
4

P(Xt11 = ze1|Her) = 1oy, (Te1)-

This requirement that RR preserve the correct distribu-
tion is somewhat analogous to the design requirement that
a Markov chain be reversible. It gives us a straightforward
approach to designing an RR.

Just as the heat bath approach gives a means for design-
ing Markov chains that are reversible, it also gives us a
method for designing RR algorithms that preserve the cor-
rect distribution. For a specified vertex v € V and.col-
oring z, let 7, (-; ) denote the conditional probability dis-
tribution of X (v) given that X|y\(y} = Z|v\{v} When X
has the stationary distribution 7. From current state z, the
heat bath (or Gibbs sampler) Markov chain approach is to
choose v uniformly at random and then choose a new color
for v distributed according to m, (-; z).
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In heat bath RR, the vertex v is chosen any way the user
desires from V' \ V4, and then a new color is picked accord-
ing to m, (-; z). However, this color is not always accepted.
We compute the acceptance probability as follows, with the
goal being to preserve the correct distribution. According
to Theorem 2 below, this goal is indeed met.

Given values z7, Ty, ;1. and T;4, that correspond to
a possible acceptance step in which vertex v is added to the
growing vertex set, define p(x},t, T7;,T1+1) to be the
ratio

agyy (Be)

Ty (Te41(v); $t)7fz; (ze)

* * —
p(z; 7zt71't+1a93t+1) =

Also define

M(zy,z74) = zf{lffjl (T, T, Tyyqs Te1)-
Then the probability that we accept a possible tran-
sition from (z},z:) to (z}.;,%:+1) is taken to be
p(z;7 Tty LL':+1 ) -Tt+1)/M(zf, x;+1)‘

We do not have to use the heat bath probabilities. It
is also valid to use the same acceptance probability, with
the distributions m, (-; =) replaced by arbitrary distributions
Dv(; ), when the distribution p, (-; z) is used to color a se-
lected v when at a configuration z.

While these acceptance probabilities may appear daunt-
ing, for many problems they simplify considerably. For in-
stance, in the independent set case, suppose first that v has
no neighbor colored 1, Then the heat bath probabilities are
1/(1+ A) for color 0 and A/(1 + A) for color 1. The accep-
tance probability in this first case will always be 1.

If instead some neighbor of v is colored 1, then heat bath
assigns probability 1 to the color 1. The acceptance prob-
ability, however, works out to 1/(1 4+ A). Careful exami-
nation of the independent set algorithm in Section 2 shows
that this is exactly how the color for v is chosen, with the
same acceptance probabilities.

To show that the heat bath randomness recycler approach
actually works (in general), we need to show that every step
preserves the correct distribution. We will first consider ac-
ceptance steps, for which the following lemma gives a suf-
ficient condition.

Lemma 1 Given possible values x}, x3, |, and x¢1 of X7,
X{y1, and X4y corresponding to an acceptance step, sup-
pose that only one value x4 of X, has positive probability.
If the bivariate process (X{, Xt)i>o0 evolves Markovianly
and if for all such 7, x},,, and w44, and the single . they
determine we have
P(X{1 = 2p1, Xer1 = Ten| Xy = 27, Xo = z)70; (24)
Ty, (Te41)C,

where C does not depend on x; or x4y, then stept + 1
preserves the correct distribution.
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Proof Let Cy := 1/P(X},, = z},,|H;), and suppose
that P(X; = z¢|H;) = mz;(2¢). Let E be the event that
X;+l = 1:;_’_1 and XH—I = T¢41- Then

P(Xt+1 = zt+1|Ht+1)
= C1P(X{y1 = 2331, Xew1 = Teqa|Hye)
= GP(EN{X, = z}|H)
= C1P(X; =a:|H)P(E|H, N {X; = 2 })
= Cimo(z)P(E|X] = 2}, Xy = z¢)
= C1Crmg,, (Te41),

where the last step is exactly our assumption.
Note that neither C; nor C depends on ;1. Hence,
summing Over Zgi1,

1= ClC z 7'1';,;:-‘*_1 (.’L‘H.l) = C]C

Te41

This completes the proof. O

Theorem 2 The heat bath RR and arbitrary RR acceptance
steps preserve the correct distribution.

Proof The acceptance probabilities were chosen precisely
to match the requirements of Lemma 1. For instance, with
heat bath RR, the left side of the equation in Lemma 1
equals

Tz}, (Tt41)
Ty (T141 (V); To) oz (Te) M (2}, 2741)
X zz (Tt),

7o (T41(v); Te) X

which reduces to the right side of the equation with C =
1/M (x},z},,). The calculation for arbitrary RR is entirely
similar. O

Now we turn our attention to rejection steps. In design-
ing an RR algorithm, it is our experience that proper han-
dling of rejection steps to ensure preservation of the cor-
rect distribution is more difficult and problem-specific to
arrange than is proper handling of acceptance steps. But
here are some broad guiding comments.

Determination of the acceptance probability at step t + 1
will reveal knowledge about the colors of some subset, call
it Dy, of V;. If we reject, we then set Vi1, to be V; \ Ds.
This insures that when we reject, we do not bias the sample.
That is, by removing D; from V;, we remove all traces of
our knowledge gained, and as a result the remaining sample
is drawn exactly from 7y, .

In the case of the independent sets, the set D; consists
of precisely those vertices prescribed to be removed by the
algorithm: w and all its neighbors, and neighbors of v with
numbers lower than that of w. [Indeed, all of these vertices
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are colored O at time ¢, except for vertex w, which is col-
ored 1.] It is not hard to check rigorously in this case that
rejection steps also preserve the correct distribution, but we
omit the details.

4 Applications

This section applies the randomness recycler approach
to several different problems of interest. For some of these
models we have theoretical bounds on the running time,
while for others we have only experimental results.

The Ising and Potts models In the Ising model, vertices
in a graph (V, E) are colored from the set {—1,1}. The
distribution 7 from which we wish to sample is defined by

(o) = TR,
where
H(z):

Z z(v1)z(va)

{vn1,v2}€E

is known as the energy of the coloring, 3 is (proportional to)
a postive parameter known as inverse temperature, and J
is 1 in the ferromagnetic model and —1 in the antiferro-
magnetic model. Generating approximate samples may be
done in (nonlinear) polynomial time in the ferromagnetic
case using Markov chain techniques of Jerrum and Sin-
clair [10] [16].

The RR approach has provably linear expected running
time for both the ferromagnetic and antiferromagnetic mod-
els when § is small (i.e., the temperature is high). The set
D; to be removed from V4 in case of rejection is just the set
of neighbors of the vertex v that we tried to add. Omitting
details and proofs, we simply state the running time bound
in the following theorem.

Theorem 3 Let A be the maximum degree of the graph. If

1 1/A
ef < (1 + —A_) ,
then the expected running time of the heat bath RR proce-
dure for the Ising model is O(n).

Comments like those following the proof of Theorem 1
apply here, where now the expected increase 1—_‘17; 1-2A-
1)A] in |V;| becomes (A + 1)e=#4 — A.

Although not needed for the theorem, in practice it helps
to introduce a third color O to supplement {—1,1}. Notice
that no edge with an endpoint colored O contributes to H.
At the completion of step t, every vertex in V' \ V; which is
surrounded entirely by vertices in V' \ V; may be recolored
0 since this action does not affect the vertices in V; at all.
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The Potts model differs from the Ising model in that
more than two colors are used, but the energy depends (in
a natural way) only on whether edges are colored concor-
dantly or discordantly, and the running time Theorem 3 re-
mains valid verbatim.

The Random Cluster Model The random cluster model
is an extension of the Potts model to noninteger numbers of
colors [4]; this is discussed further below. Unlike our pre-
vious examples, which colored vertices, the random cluster
model colors edges of a given graph G = (V, E) with col-
ors from {0, 1}. If A is the set of edges colored 1, then the
distribution is

©(A) = plAl(1 — )P\ gD 7z, .. ACE,

where p € [0,1); ¢ > 0 is not necessarily an integer, and
we shall assume ¢ > 1; ¢(A) is the number of connected
components in the graph (V, A); and Z, 4 is a normalizing
constant.

The RR approach is as follows. We represent a set A C
E by a binary vector z, by setting z(e) = 1 fore € A,
and z(e) = O otherwise. At each step, we keep track of
such a vector z;¢ and a set E; of edges, namely, the edges
on which z; is random; all other edges will be colored 0.
We choose an oriented edge e = (v,w) € E \ E, until
such an edge e no longer exists. We set z;41(e) = 1 with
probability p, and z,4,(e) = O with probability 1 — p. If v
and w are already connected in z; [i.e., in the graph (V, A;)
where A; = {e' : z¢(e) = 1} C E.l, then we accept
the edge and set Fyyy; = E; U {e}. If v and w are not
already connected, then we always accept z:+(e) = 0, but
we accept z¢+1(e) = 1 only with probability 1/¢ (since by
adding this edge we reduce by 1 the number of connected
components).

When we reject, we know that v and w lie in separate
components in (V, A;). To counteract this knowledge, to
form E;,; we remove from E; all the edges in the com-
ponent of (V, A;) that contains w, together with all edges
of E, that lead out of this component (and which therefore
do not belong to A4;).

We could cease our handling of a rejection step at this
point and prove that (a) the algorithm works correctly and
(b) Theorem 4 below holds (and the proof simplifies some-
what) with the bound on p decreased to

p<1/(A-(1/9)-

However, we shall omit the formal proof of correctness and
instead discuss a small (provably valid) trick which gains us
some efficiency.

Suppose that there are M vertices in the removed com-
ponent. Consider the (connected!) graph consisting of the
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vertices and edges in this component, together with the ver-
tex v and the edge {v,w}. Choose (in any fashion) a span-
ning tree T of this graph; T will comprise M + 1 vertices
and therefore M edges. Add back all these M edges to get
E,.,. Sample from the random cluster model on 7', and
add back in the edges thereby colored 1 to get A;4;.

The key observation here is that it is elementary to sam-
ple from the random cluster model when the graph is a
tree. Indeed, then each edge independently is colored 1
with probability p/(1 — p + p) and 0 with probability
(1-p)/(1 = p+ p), where

p:=p/q.

The random cluster model is an extension of the ferro-
magnetic Ising and Potts models. When g > 1 is an integer,
and p = 1 —exp{—{}, then samples from the random clus-
ter model may be used to generate samples from the ferro-
magnetic Potts model with g colors by independently taking
each connected component of (V, A), uniformly choosing
one of the g colors, and assigning to every vertex in the com-
ponent that color. For certain instances of the random clus-
ter model, the heat bath Markov chain approach is believed
from experimental evidence to be rapidly mixing [15], but
no theoretical rapid mixing results in the positive direction
are known for any nontrivial instances of the problem. For
some instances, the Markov chain approach is known not to
be rapidly mixing [5]. For the RR approach, we know that
when p is small (corresponding to small 3), the approach
takes an expected number of steps which is linear in the
number of edges:

Theorem 4 Suppose that
- (/9 - VIA - (1/9P - 41 - 1/g)(A - 1)
21-(1/9lA-1)

Then the expected number of steps required by the RR algo-
rithm is O(|E}).

For example, if A = 4 (as on a 2-dimensional rectangu-
lar grid) and ¢ = 2 (corresponding to the Ising model), then
our restriction is that p < 1/3; this improves on the restric-
tion p < 1/(A — (1/q)) = 2/7 obtained when the “add a
tree” trick is not employed.

Comments analogous to those following the proof of
Theorem 1 again apply.

Proof We use a potential function that rewards us for
adding edges and penalizes us for connecting components.
Let

$(Er, At) := |Et| — ac(Ay),

where a will be determined later.
When the edge {v,w} we attempt to add to E; is be-
tween two vertices already connected in A;, then ¢ always
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goes up by 1, making this case uninteresting. It is when
{v,w} would connect two previously unconnected compo-
nents of A, that the calculation becomes interesting.

If the edge is chosen to be excluded from A;y;, then ¢
increases by 1. If the edge is proposed to be included in
At 41, then ¢ changes by 1 — a if we accept. If we reject,
we remove from A; (and also from E;) a component of size
M and (from E;) all of its adjacent edges. Not counting
the edge {v,w} and making sure that we do not double-
count, this totals at most M (A —1) edges removed from E;.
However, we add exactly M — 1 new components to A;
by removing these edges. When we add the tree T' back
in, this produces M new edges for E;,, but for each such
edge there is a p/(1 — p + p) chance of including the edge
in A;41 and thereby reducing the number of components
by 1. Therefore, when we attempt to add {v,w} to A¢y1,
but reject instead, the expected contribution to the change

in¢is at least
))
1-p+p :

Now M may be very large (nearly as large as n), so we
choose « in such a way that the coefficient of M in this
expression vanishes. That is, we set

l1-p+ p>

wma- (1522

and so the contribution in this case is bounded below by
-,

We try to put the edge in with probability p and to leave
it out with probability 1 — p. We accept an inclusion with
probability 1/q. Putting everything together, we find that
the expected change in ¢ at any time step when v and w are
not already connected in A; is at least

1
a-p+pia-a+(1-3) ¢a),
which is positive exactly when

A-(Q1/g) - [A- {1/
201 - (1/9)l(A

—M(A—1)+M+a(M-1—M(

—41-({1/9iA 1)
- 1)

m]

In this case, the Markov chain approach does not have
theoretical guarantees on the running time for any nontrivial
value of p. While coupling from the past may also be used
to generate perfect samples, there is no a priori bound on its
running time.

As with CFTP, we may still use the RR approach for val-
ues of p for which no theoretical bound exists. We simply
do not know beforehand how long the algorithm will take.
Unlike CFTP, the RR approach is interruptible, so we may
abort the procedure if it needs too many steps, without in-
troducing bias into the sample.
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Proper colorings of a graph Finding the number of
proper colorings of a graph is a #P-complete problem [9].
Recall that a proper coloring of a graph assigns each ver-

~ tex a color such that no edge has both endpoints colored the
same color. The ability to sample from the set of proper
colorings leads to an approximation algorithm for counting
the number of such colorings.

Markov chain approaches require that k, the number of
colors, be at least (11/6)A (where A is again the maxi-
mum degree of the graph) [19] in order to guarantee rapid
mixing for the chain. Perfect sampling using bounding
chains {7, 6] is only guaranteed to run in polynomial time
when the number of colors is 2(AZ?). Unfortunately, the
straighforward RR approach does not match these bounds.
Somewhat roughly stated,

Theorem 5 The heat bath RR approach to generating per-
fect colorings requires only a linear expected number of
steps when k is Q(A*).

As with the bounding chain procedure, however, this al-
gorithm may be run even when & is much smaller; we sim-
ply have no reasonable a priori bound on the running time
in such cases.

The Move Ahead 1 chain Finally, we present a problem
where an RR-based algorithm seems experimentally to run
fast although we cannot give any theoretical bounds. In the
list update problem, a set of items is kept in a list. To access
an item, a user starts at the beginning of the list and steps
through the items until the desired item is located. The lo-
cated item may be replaced in the list anywhere between its
current position and the front of the list, at fixed cost. The
goal is to use a replacement strategy that keeps small the
access times (i.e., item depths in the list) needed for items.

Call the strategy which moves the accessed item to the
front of the list the Move to Front (MTF) rule. A worst-case
analysis shows that the MTF rule yields a 2-approximation
for the optimal total access time for any sequence of item
requests [18]. Alternatively, it is useful to employ proba-
bilistic models to describe how list items are chosen to be
accessed. Commonly, such an access model will induce a
Markov chain model on the evolution of the order of the list.
Characteristics such as the limiting distribution as ¢ — oo
of A;, where A; is the access time for the item accessed at
time ¢, can then be estimated by drawing from the stationary
distribution of the chain.

To be specific, label the items with identification num-
bers 1,...,n; suppose that at each time step, independently
of previous time steps, any particular item ¢ is accessed with
probability p; > 0 (independently of the order of the list);
and suppose that after each selection, the accessed item is
moved forward one rank in the list, i.e., is transposed with
its predecessor in the list. (If the accessed item is already at
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the front of the list, the order of the list is left unchanged.)
The self-organization rule we have described is called the
Move Ahead 1 (MA1) rule. The limiting expected access
time for MAL1 is known to be, for any access probability
vector p, no more than that for MTF [17]. Further Monte
Carlo study of the limiting access time distribution is com-
plicated by the fact that sampling from the limiting list-
order distribution 7 (for which a formula is known, but only
up to a normalizing constant) seems to be quite difficult in
general.

Coupling from the past approaches to sampling from =
exist [8], but experimental evidence suggests that use of RR
gives a faster algorithm. Suppose that p; o ri for some
ratio 0 < r < 1. Then experimental evidence suggests
that for each fixed value of € (0, 1] the expected running
time is linear in n, although the constant of linearity does
varywith . The Markov chain approach to this problem is
only known to be rapidly mixing when r < 0.2 [8).

5 Conclusion

The RR approach to perfect sampling gives exact sam-
ples from difficult distributions without using the traditional
Markov chain. It is quite different from other recent ap-
proaches to perfect sampling such as coupling from the past.

Because it dispenses with the Markov chain, the RR ap-
proach yields, for restricted versions of some of these prob-
lems, the first expected linear time algorithms for these
problems. Even when the running time of RR is unknown,
the algorithm may be run and the output will be guaranteed
to come from the correct distribution.

Unlike coupling from the past, RR is interruptible, so the
user may set a time limit on the algorithm’s running time (if
measured in number of iterations of the basic Repeat loop)
without introducing bias into the sample. Like read-once
coupling from the past [20], this algorithm does not require
storage of any random bits. (Another perfect sampling ap-
proach, that of Fill, Machida, Murdoch, and Rosenthal [3]
is also interruptible but not read-once, and so does requires
storage of random bits). We wish to stress that these ex-
isting means for perfect sampling rely on finding a “good”
Markov chain for the problem at hand. RR does away with
the chain, and in doing so breaks the O(n Inn) barrier that
has characterized so many of these problems.

For independent sets and for proper colorings, the the-
oretical bounds obtained apply only for a more restricted
set of parameters than do those based on Markov chain
approaches. However, when the appropriate restriction is
met, our RR method is faster, yielding samples in a lin-
ear (expected) number of steps. Moreover, much work has
gone into analyses of Markov chains, while our work is still
rather new, and we might hope with time and further effort
eventually to match or even to relax the restrictions needed



for the Markov chain approaches. For the Move Ahead 1
chain we do not know any theoretical bounds on the run-
ning time of our method. However, computer experiments
show that for this problem the RR method works much bet-
ter in practice than does the CFTP method.

For the random cluster model, our RR technique is guar-
anteed to run in a linear (expected) number of steps for a
range of values of p. This is in sharp constrast to the Markov
chain approach, where no polynomial running time bounds
are known except in trivial cases.

In summary, the randomness recycler is not applicable
in all situations where Markov chain approaches are used,
but RR often gives a fast read-once interruptible means for
generating perfect samples that in restricted cases gives the
first linear time algorithms for some difficult and important
problems.
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