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Preface

These notes cover a one semester course in Monte Carlo methods for students who have
had a calculus based probability course.

A Monte Carlo method is any computational technique that utilizes random choices.
Typically these random choices are using to make the algorithm faster than a deterministic
one. These methods are essential for the estimation of high dimensional sums or integrals
that arise in physics, statistics (both frequentist and Bayesian), #P complete problems,
centrality measures in graphs, and evaluation of the prices of derivatives in mathematical
finance.

The course introduces students to the use of R, but does not assume prior programming

knowledge.

Background The preparation needed for this course is a typical undergraduate course
in probability. In particular, knowledge of expected value together with exponential and
uniform distributions is a must. The text Probability: Theory and Exploration is OpenAccess
and free to use, and covers all the ideas from Probability needed for the course. For those
needing a less comprehensive review, the first Appendix provides a rapid introduction to
probability.

Why are all the numerical answers in problems and examples given to 4 significant
digits?

In my homework assignments to students I require that all noninteger answers be
presented to four significant digits. There are several reasons why I do this.

The first is that it makes answers uniform. I do not have to worry if 1/(3 + /2) =
(3 — v/2)/5 or not if the answer given is 0.2265. The second is that it emphasizes to
students that in most problems in applied mathematics the exact numbers are uncertain.
The number 1/3 is specific and exact, but not actually encountered outside of toy problems.
Third, it builds numerical literacy (or numeracy as it is sometimes called.) Seeing that
exp(—2) ~ 13.53% is a useful thing, as it gives that much desired reality check on the
answers provided.

viii 253
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Chapter 1

Introduction to Monte Carlo

Question of the day

Estimate

1
/ 2% dx
0

by using random choices.

Summary

Monte Carlo methods are algorithms that use random choices. The basic Monte Carlo
technique to estimate a number a is as follows.

1. Construct a random variable X such that E(X) = a.

2. Take independent identically distributed samples X7, ..., X,, where each X; ~ X,

and return
X1+ + X,

n

a =
as the estimate of a.

For bounded integrals, to estimate

use U uniformly distributed over [0, 1]. Then E[g(U)] = I.

1.1 What is Monte Carlo?

An integral such as
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is deterministic. That is, there is exactly one true value of I. So at first glance, it would
seem strange to intentionally add random choices into an algorithm for finding /. And for
such a simple integral, that intuition would be exactly right.

But as integrals become more complicated and move to higher dimensions, the use of
randomness in their evaluation becomes essential to developing efficient approximations.
To distinguish a deterministic algorithm from one that inject randomness into decisions,
call the ones that use randomness Monte Carlo methods.

Definition 1
A Monte Carlo method is an algorithm that utilizes random choices.

History 1

Monte Carlo algorithms go back thousands of years, but in the modern era credit for
developing them into a commonly used method is typically given to Stanistaw Ulam
who conceived of them during work at Los Alamos National Laboratory. Ulam loved to
gamble, and his friend Nicholas Metropolis gave these algorithms the moniker Monte
Carlo because of the famous casino in Monte-Carlo, Monaco.

Figure 1.1: Stanistaw Ulam’s Los Alamos desk exhibit.

When computer scientists study an algorithm, they often find it useful to imagine that it
is a game that is being played against is an opponent called the adversary. This adversary is
trying to give inputs for the algorithm that make the algorithm run for as long as possible.
By making choices randomly, however, it is often possible to foil the adversary most of
the time and create an algorithm that runs more quickly than if the same choice is always
made when given the same input.
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1.2 Integrals

One way to see this phenomenon in action is to consider an algorithm for approximating
integrals numerically. Suppose the goal is to calculate the value of an integral or a sum in
high dimensions. Deterministic algorithms work well for one-dimensional integrals, but
the problem grows much harder as the dimension of the problem increases.

Here, in order to keep things simple, start by looking at a one dimensional integral:

1
a= / 22 dx.
=0

Any integral consists of three pieces:

1. Limits: In the example, the limits are z € [0, 1].

2. Integrand: The function being integrated, in this case x2.

3. Differential: Here we use dx to indicate that this is to be calculated using a Riemann

integral.

The acronym LID can be used as a mnemonic to remember these three parts of an integral.
It is helpful to be able to write our integrals as going from negative infinity up to positive
infinity. Outside the original limits of the integral, the value of the integrand should be
zero. An indicator function can be used to do this.
Define the indicator function as follows.

Definition 2
Using T for a true statement and F for a false statement, the indicator function [ :

{F,T} — {0,1} is defined as

The indicator function can be used to describe functions that have jumps. For instance,

the function
f(z) =1Lz € [0,1])

evaluates to 1 when z € [0, 1], and is o everywhere else. So its function looks like

10—0
| | ) | |
I I 7 N~ I I
-2 -1 o 1 2 3
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You might recognize this function as the density or pdf of a random variable that is uniform
over [0, 1].

Since f(z) = I(z € [0, 1]) equals 0 outside [0, 1], anything multiplied by it will also be
0 outside [0, 1]. Anything in [0, 1] is unchanged when multiplied by I(x € [0,1]). Also,
when the limits are omitted, the convention is that the limits are over the whole space of
the variable of integration. That means

/3510952 dr = /;O :c?]l(:z: € [0,1]) dz = /xQH(m € [0,1]) da.

= =—00

In other words, an indicator function can be used to incorporate the limits of integration
into the function being integrated (the integrand.) In the other direction, you can take an
indicator function out of the integrand by placing it in the limits.

Okay, but what does that actually accomplish? Remember when you learned how to
find the expected value of a random variable? Recall that E[Y'] stands for the mean (also
known as the expectation, expected value, and average) of the random variable Y.

Fact 1
For X a continuous random variable with density fx and h a (measurable) function,

Blo(X)] = [ gla)fx(a) do
z€eR
For X a discrete random variable with density fx and h a (measurable) function,

Elg(X)] =D 9(i) fx (i)

i€R

Recall I(x € [0, 1]) is the density of a random variable X that is uniform over [0, 1].
Write X ~ Unif([0, 1]). Then

E[X?] = /ER 2*(z € [0,1]) da.

This means that the value of the integral is an expected value of a random variable. So
now the question becomes: how can E[X?] be estimated?

1.3 The Strong Law of Large Numbers

Consider a stream X1, Xo, ... of random variables that have the same distribution as X.
We call such a stream independent, identically distributed (iid for short) random variables.

Then the Strong Law of Large Numbers says that with probability 1, the sample average
of the first n values of the stream will converge to the mean of X provided E[X] exists
and is finite.

5 253
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Theorem 1 (Strong Law of Large Numbers)
Let X have finite expectation, and X1, Xa,... ~ X be an iid sequence. Then

P(er~+xn:
n

mm>:L

So one way to estimate E[X?] is to draw a bunch of numbers from the stream, and take
the sample average.

Definition 3
The naive Monte Carlo method for estimating a is to generate X, ..., X,, where
each X; has mean a, and use

X1+ + X,
n

a =

as the estimate.

1.4 Using R

It’s no coincidence that Monte Carlo methods gained prominence around the time that
the first digital computers were invented. It turns out that to make Monte Carlo methods
effective, you need a lot of random variables, and computers are a great way to make that
happen.

In this text, I'll be giving code examples using the statistical computing language R.
Since R is open source, you can download it for free to your computer or laptop from
https://www.r-project.org. In the next chapter I’ll discuss how to use R and a companion
program called RStudio to build more complicated pieces of code.

For now, however, you can run R code directly through your web browser
using various services. One such is called Programiz, and can be accessed at
https://www.programiz.com/r/online-compiler/. The code will be typed into a text editor
on the left, and then after the blue “Run” button is pressed, the output will be displayed on
the right. This is a public server, so do not run any code that you wish to keep private on
this service.

To generate random uniform variables over [0, 1] we can use the runif () command in
R. All the random number generating functions in R have the same form, an r followed
by the name of the distribution. The first parameter of the function specifies how many
uniforms we need.

To store the results, the assignment operator <- is used. The command

runif (1)
returned [1] 0.484434 when run for this work, but if you run the command the result
could be different! The [1] means that the output starts with the first number. The number

of random values generated was controlled by the number inside the parentheses after
runif. To get more random numbers, increase the number.

6 253
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The command
runif (4)
gives output

[1] 0.5453125 0.3496551 0.4990681 0.2960938

when run.

The mean () command (aka function) takes the sample average of a vector. That is, it
adds up the values then divides by the number of values. Putting this together, the following
generates 1000 iid uniforms, then takes the sample average. To feed these numbers to the
mean () function, use the pipe operator | >.

runif (1000) |> mean()

Now let’s estimate fol 22 dx using the following code:
runif (1000) "2 |> mean ()

The ~2 notation means to square the random numbers used. The output result should be
close to 0.3333333, but not exactly.

Each time you run the code, your answer will change slightly. This is because each
time you run the code, the algorithm is making slightly different random choices. To force
the algorithm to make the same random choice each time, you can use the set . seed ()
function.

set.seed (123456)
runif (1000) "2 |> mean ()

With the seed set in this way, when I ran the code I always received the answer

[1] 0.3290711

The [1] means that the first number of output is 0.3290711. No matter how many times
the “Run” button is pressed, the result is the same.

The random numbers in most computing languages are the result of applying a complex
function to an initial seed. By resetting the seed with the function set.seed (), you can
get the same results every time you call any function that generates from a probability
distribution.

A few notes.

« No computer can actually generate a number that is uniform over [0, 1] because
that would require an infinite amount of memory to hold the digits. Instead, it will
generate numbers uniform over the finite set of possible numbers represented by
the computer using 32 bits of information. This is called a single-precision floating
point number. Some languages generate 64 bits of information. This is called a
double-precision floating point number, or double for short.

+ Using more uniforms gives more accurate results. Trying

runif (1076) "2 |> mean|()
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1.3:

1.4:

1.5:

1.6:

three times gives
0.3329048, 0.3337699, 0.3334153,

which are more tightly clustered around the true answer of 1/3 than when only
1000 samples were used. In later chapters the error in the Monte Carlo method will
be discussed in detail, along with approaches to minimizing error.

Once a random variable has been generated by a computer, it becomes a random
variate.

Problems

: Given U a uniform over [0, 1], that is, a standard uniform, create a random variable

Y that is a function of U such that

E[Y] = /01933 dz.

.2: Given a standard uniform U, create a random variable W that is a function of U

such that )
E[W] = / e’ dx.
0

2
I :/ s ds.
s=0

a) Find a change of variables for s so that the limit of the integral runs from 0 to
1.

b) Find a function A such that for U ~ Unif([0, 1]), E[A(U)] = I.

Consider the integral

Create a function h such that for U ~ Unif([0, 1]),

hU) = /T/4 cos(t) dt.

—7/4

It might be helpful to first change the integral through a change of variables for t.
Given an integral
I= /01 exp(—v/z) dz,
what function h(u) has E[h(U)] = I for U a standard uniform?
Given an integral
I= /0 1 1/V1+axdr

what function g(u) has E[g(U)] = I for U a standard uniform?

8‘253
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1.7: Write R code to estimate
1
I= / exp(—v/z) dz
0

with seed 123456 using 10 samples. Hint: look up (or use your favorite search
engine) to find out the functions in R to take the square root function and apply the
exponential function to numbers.

1.8: Write R code to estimate .
I:/ 1/V1+xdx
0
with seed 123456 using 10% samples.
1.9: If U ~ Unif([0, 1]), what is E[v/U]?

1.10: If U ~ Unif([0,1]), what is E[1/(1 4+ U)]?

9 253



Chapter 2

Scripts and R Markdown files

Question of the day

What is R, and how can it be used effectively to run Monte Carlo simulations?

Summary

« Ris a free statistical computing environment that is well-suited to building Monte
Carlo algorithms.

« RStudio is a free Integrated Development Environment for building code in R.

« A script is a set of commands that can be executed by R. Use a .R file extension for
scripts.

« An R Markdown file can be easily transformed into a standard, professional looking
document that includes R code execution. Use a . Rmd file extension for these files.

« Inside RStudio, an R Markdown file acts as a notebook, where code chunks can be
executed individually, and the results displayed.

R is a statistical environment for computing, which means that it is a programming
language that has the capacity to run scripts and many functions intended to help in running
Monte Carlo algorithms. In addition, it has a free Integrated Development Environment
(IDE) called RStudio that includes R Markdown. This allows the user to create a publishable
work that includes code, text, and mathematics using the EIpXsystem.

RStudio was created by a company called Posit, and the best way to find out how to
download it is to use a search engine with the query ownloa RStudio . As of December
2024, this takes you to https://posit.co/download/rstudio-desktop/ that includes buttons on
the web page for first downloading R and then downloading RStudio. Because this is run
by a company that link will probably change over time.

Once you install first R and then RStudio on your computer, you are ready to start
learning how to use R to compute!

10 253
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2.1 The Console
When you first start RStudio, it will look something like this:

R version 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing Environment is empty
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

[workspace Toaded from ~/.RData]

>

The various rectangular areas on the screen are called panes. The pane on the left is
(by default) set to the tab labeled console. In the console, you can type in commands that
perform computations or assign values to variables.

For instance, if you type

4 + 5
in the console and hit Enter, you will see

[1] 9

The [1] indicates that there was one output from your computation. The result of the
computation was 9 .

Assignment to variables can be done with the <- operator.

x <= 4

Once a variable (like x) has been assigned a value, then every time R sees that variable
name, it substitutes the value the variable has been assigned. So

x + 5

also returns
[1] 9

when executed.

11 253
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2.2 Scripts

Often we wish to give multiple commands to R. The simplest way to organize these
commands is to use a script.

Definition 4
In R, a script is a collection of commands that you want R to execute.

In RStudio, a file for a script can be created with the menu command:
File » New File » R Script.

By default, RStudio will open up a window in the upper left portion of its area. Commands
can then be typed into this area. For instance, suppose I put

x <= 4
y <= 95
X +y

Note that nothing happens, except the lines of the file get numbered 1, 2, and 3 (in the gray
area to the left of the code) as you type the lines.

To tell R to execute these lines, use the source function. There is a very helpful shortcut
for activating this function. Above the pane where the code displays there is a checkbox
with the label ‘Source On Save’. When this box is checked, every time the file is saved, the
script will automatically be executed in the console.

Give it a try! First, make sure that the checkbox is checked. Then use the menu command

File » Save

to save the file (there is also a shortcut for this command that is operating system depen-
dent.)

Note that upon saving the file, in the console below the source command has been
given.

Check that the commands were executed by typing

X
Yy

directly into the console.

R fact 1
If the file extension is unspecified when saving a file, the default is . R. This convention
for R script files will be sued throughout this work.

It seemed like the x+y command in the script did not do anything! This is because
commands that would normally print in the console do not print when executed as part of
a script. A value can be forced to print in a script using the print command. Try changing
line 3 of your script to

12 253
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print (x+y)
and source the script again. This time you should get output
[1]1 9

just as if you had typed x + y into the console.

Why you should use scripts  Scripts act as a scientific record of your analysis. They
record exactly what you did and how you got your simulated data.

Now, if someone else (say a researcher following your work) is trying to extend your
analysis or apply it to another area, they do not have to guess what exactly you did. They
can see each step exactly. That is why it is important to keep track of your procedures
precisely as a script or similar form.

2.3 R Markdown

One of the most important aspects of Monte Carlo simulations is having the ability to
communicate what you learned from your simulation, and the ability to show how you
found it to others. Scripts are a good start to this process.

You want your communications to have the following good properties.

1. Complete. Someone reading your work should be able to replicate what you did.

2. Compatible. You want to use a standard format, HTML, PDF, or Markdown to
communicate your results so that they can be viewed by the widest possible not so
tech savvy audience.

3. Professional. You want output that is both neat, well organized, and looks good.

These three goals are usually accomplished using a markup language. These are a set of
commands that allow you to emphasize words, add a bit of , and start new sections,
subsections, and paragraphs. Markup languages also can be used to create a list of bullet
points or numbered points.

The most commonly used markup language today is HTML, which stands for Hypertext
Markup Language and is the language webpages are usually written in.

In mathematics and the sciences, another commonly used markup language is EKTgX,
because it is very good at typesetting documents that include mathematics. This ebook
was typeset using EKIEX.

Most word processors have an internal markup language, but since the user usually
cannot see it, they cannot directly make changes. The advantage of a markup language is
that you can specify what you want to happen in a general sense, and then the language
takes care of the details. For instance, if you say you want a new chapter, the markup
language will take care of the numbering and table of contents for you without the need
for you to intervene.

13 253
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2.4 Markdown

That being said, markup languages can be cumbersome to use with a lot of extra commands
embedded in the file. For this reason, John Gruber created a light markup language that
emphasized ease of use and readability over the ability to do any possible thing. The result
was Markdown. (Get it? Markdown is a lighter version of a markup language. That’s
computer science humor for you in a nutshell.)

The Markdown language has been implemented in many different formats, the one that
we will use here is the version implemented by R, called R Markdown. If you want to
learn more about how R Studio incorporates R Markdown, go to https://rmarkdown.
rstudio.com/

We can start a new R markdown file with

File » New File » R Markdown

which will create a new document similar to the way that we created a new script.

R fact 2
The default file extension for R Markdown files is . Rmd.

Here’s an example of an R markdown file that contains code

title: "Our script in R Markdown"
author: "Mark Huber"
date: "November 15, 2018"
output:
html_ document:
number_sections: true

‘Y'Y {r setup, include=FALSE}
knitr::opts_chunk$set (echo = TRUE)

ANAURY

# R Markdown

This is a document written in R Markdown. Notice that we
started a new section very simply by putting a # character.
To create a subsection, we can use ##. More examples,
templates, and instructions for R Markdown can be found at <
http://rmarkdown.rstudio.com>.

## This 1s a subsection
To take an R Markdown document in R Studio and create a new

document, use the **Knitx* button. This button takes the
Markdown document and converts it to a different format or
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markup language. Because in the preamble (called the YAML (
YAML is not a markup language) heading) it says output: html
_document, the final output created by knit will be in HTML
for this document.

## Putting R code inside an R Markdown document

When you click the #**Knit** button a document will be generated
that includes both text as well as the output of any embedded
R code chunks within the document. R commands are embedded
as a **code chunk#** like this:

‘Y'Y r code}
x <= 4
y <= 5
print(x + y)

ANAURY

Some key points:

1. The heading at the beginning marked out by ——- is called a YAML header. YAML
stands for YAML Ain’t Markup Language. This is an example of a recursive acronym.
The contents of the header such as title and author should be self-explanatory.
YAML is not a markup language, instead, it is considered a data serialization language.

2. Use # to start a new section.
3. Use ## to start a new subsection

4. Use * " to mark out blocks of code. The echo=FALSE parameter indicates that the
code block should not be listed in the output, but the results of running the command
should be.

Note that there is a button above the file called Knit. Press this button to turn the R
Markdown file into an HTML file.
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Our script in R Markdown

Mark Huber
November 15, 2018

1 R Markdown

This is @ document written in R Markdown. Notice that we started a new section very simply by putting a # character. To create a subsection, we
can use ##. More example and instructions for R can be found at http://rmarkdown.rstudio.com.

1.1 This is a subsection

To take an R Markdown document in R Studio and create a new document, use the Knit button. This button takes the Markdown document, and
converts it to a different format or markup language. Because in the preamble (called the YAML (YAML is not a markup language) heading) it
says output: html_document, the final output created by knit will be in HTML for this document.

1.2 Putting R code inside an R Markdown document

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks
within the document. You can embed an R code chunk like this:

x <-4
y< 5
print (x + y)

## [1]1 o

2.5 Using .Rmd files as a notebook

Going back to the .Rmd file in RStudio, notice that any code chunk has a little green arrow
next to it.

26 - """ {r code} 3
X < 4

29 print(x + y)
3

Pressing that green arrow immediately copies the contents of the code chunk to the
console and executes each line one at a time. The output is displayed in the R Markdown
file right below the code chunk.

26- " {r code} >
27 x < 4
28 y<5

29 print(x + y)

E

119

This ability to execute code chunks inside a document makes the file a notebook.

The symbol just to the left of the little green arrow will execute the current code chunk
and all the chunks above it, which can be helpful if it depends on previous definitions.

For simple analyses, there is no need to write scripts, only R Markdown files.

2.6 BT

When you are writing papers and descriptions in social or physical sciences, you often
need to add in mathematics equations and definitions. These can be added through the use
of BTgX.

Here we will not be using a complete KTEX document, instead, we will embed simple
commands into our R Markdown documents. For instance, suppose we added to our
previous document the following code.
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## LaTeX examples

This is an example of inline mathematics: \( a”2+b"2=c”2 \).
This is an example of *inline mathematics*, the mathematics
is presented in the middle of a line of text.

The second kind of mathematics is *display mathematics+, which
is written like

\ [

a”2 + b"2 = c"2.

\1]

This is the same statement, but now it appears on a separate
line of the output document.

The result looks like

1.4 LaTeX examples

This is an example of inline mathematics: a® + b% = 2 Thisis an example of inline mathematics, the mathematics is
presented in the middle of a line of text.

The second kind of mathematics is display mathematics, which is written like
o+ b=

This is the same statement, but now it appears on its own line of the document.

Problems

2.1: Two useful symbols in KIEX are _ for subscripts and ~ for superscripts. For instance,
%3 becomes 23, and x 7 becomes z7. Use BTEX and braces { and } to make the
following.

a. 11,'2.

b. z73.
C. I4.
d. Ta+b-

2.2: Write KIEX code to do the following.

a. Create x 2.

b. Create z¥ 17,
c. Create x_o.

d. Create x4 .

2.3: The \ frac command in BIEX creates fractions. For instance, \frac{3} {4} pro-
duces
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Write KIEX code to create
T1+ T2+ 23

7.3.
3

2.4: Write BIEX code to make the following line of mathematics:

34466
100

2.5: The \int command makes integrals in BKIEX. For instance, \int_0%5 x*2 dx =
125 /3 could be used to make

5
/ 2% dr = 125/3.
0

Write KIEX code to make the following output

1
/ 1—2%dx.
-1

2.6: Using the fact that \sqrt {x} returns y/z, write KIgX code to create the following
output:

15
Vv dx.

0
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Essential Probability

Question of the day
Suppose X has density fx(s) = 2sl(s € [0,1]). What is P(X € [0.6,0.8])?

Summary

+ A measure of a set gives the size of the set. The two most common measures used in
probability are Lebesgue measure, applied to subsets of n dimensional real space,
and counting measure, applied to discrete sets.

« A random variable X is a variable about which the user has extra information, so
for some measurable sets A, it is possible to calculate the probability that X falls
into the set A.

A function fyx is a density of a random variable X with respect to measure p if for
all measurable sets A,

POX €)= [ fx(s) dn

« A function gx is an unnormalized density of a random variable X € € if for
I = [ 9x(s)du, gx/I is a density of X. Call I the normalizing constant for the
density.

For real-valued random variables X, the cumulative distribution function (aka
cdf) of X is a function such that for all real a, P(X < a) = cdf x(a). If the cdf is
continuous, the random variable is continuous. If the cdf is flat with jumps, then
the random variable is discrete.

Unlike a deterministic method for estimating an integral like the trapezoid rule, Monte
Carlo algorithms will usually return a different answer every time you run the simulation.
This is because the answer is a random variable. In this chapter, the properties of random
variables will be explored. In addition, other facts from probability that will be useful to
the construction of Monte Carlo Algorithms will be introduced.
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3.1 Random variables

So what is a random variable? A regular variable can be anything inside a set. For instance,
x € R denotes that the value of the variable x is completely unknown, other than it is a
real number.

The idea for a random variable like X is that the user has extra information. The value
of X is not completely unknown, but a statement like X € [5,10] has a probability of
being true that is known to the user. That is, random variables are really variables with
extra information attached.

To understand that information, it is necessary to know the density of a random variable
with respect to a measure.

3.2 Measures

All real-valued random variables are either continuous, discrete, or mixed.

+ Continuous means that the chance the random variable equals any particular value
is 0. In mathematical notation: (Va € R)(P(X = a) = 0).

« Discrete means that the random variable takes on one of a countable set of values
with probability 1. In notation: (I{x1,z2,...})(P(X € {x1,22,...} = 1)

« Mixed means that there is a probability that the random variable is continuous.
If not, it is discrete. In notation: (3C cont, D discrete, B ~ Bern(p))(X = CB +
D(1 - B))

A measure tells us the size of a set. The two measures that we use most often in
probability are Lebesgue measure and counting measure.

Lebesgue measure This is for continuous sets, and we use ¢ to denote it. In one
dimension, it tells us the length of an interval, in two dimensions, it is the area of the set,
in three the volume, and so on. The Lebesgue measure of a set can be found by integrating
the function that is the constant 1 over the set, or the indicator function that is 1 when the
point falls into the set.

€(A):/AldA:/Q]1(seA)ds.

12([3,7]):/ ]I(se[3,7])ds:/ lds=st=7-3=4.
seR 56[3»7]
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Counting measure This is for discrete sets, and we use # to denote it. This counts the
number of elements in the set. For A a set,

=) IlacA)= Zl—ZHaeA

acA
Example 2
#({a,b,c}) => Ii€{abc})= > 1=1+1+1=3
¢ ie{a,b,c}
An integral of the form [, f(s) ds is said to be with respect to or against Lebesgue

measure. Integrals with respect to countlng measure can also be built. They turn out to just
be sums, which makes them much easier to calculate in practice (but strangely, tougher to
handle analytically.)

Notation 1
Writing sums as integrals with respect to counting measure can be done as follows.

z/if(i)d

3.3 Densities

A density of a random variable can be used together with integrals to find probabilities
associated with the random variable.

Definition 5
A random variable X has density (aka probability density function aka pdf) with
respect to measure p if for (X € A) a measurable statement,

POX € 4) = [ fxs) du

This means that if X is a continuous random variable,

P(X e€A) = AfX(s) ds
se

and if X is a discrete random variable

P(X € A) =) fxl(i).

€A
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Example 3
Question of the day Here X is continuous, with density fx(s) = 2sl(s € [0, 1]) with
respect to Lebesgue measure. So

P(X € [0.6,0.8]) = / 25I(s € [0, 1]) ds
5€[0.6,0.8]
0.8
= / 25 ds = s°|08 = 0.64 — 0.36 =
0.6

In the example, since s € [0.6,0.8] in the integral, the indicator function I(s € [0,1])
did not do anything. However, in general, an indicator function can be used to change the
limits of integration.

Fact 2
For any real-valued integrand,

/A fx@IseBydu= [ fx(s)dp.

ANB

Example 4

/36 22 dr = /R:UQI[(:E € [3,6]) du.

Often we talk about an unnormalized density.

Definition 6
Say that g is an unnormalized density over () with respect to measure p if g is a
nonnegative function and
I= / g dp
Q

is a positive, finite number not equal to 1. Call I the normalizing constant of the
density, and g/ the normalized density.
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Example 5

What is the normalized density associated with unnormalized density g(z) = z?I(z €
[3,6])?

Answer The integral of the unnormalized density is

6

6 3 _
/ Pde= | =223
3 3 |5 3
so the normalized density is
22I(z € [3,6
ey = M2 B,

For historical reasons, letters towards the end of the alphabet (r, s, t, z, y) tend to be
used when dealing with integrals against Lebesgue measure. Letters in the middle third
of the alphabet (7, j, ¢, k) are typically used when dealing with integrals against counting
measure.

3.4 Cumulative distribution functions

Definition 7
For a real-valued random variable X, let

cdfx(a) = Fx(a) =P(X < a)

be the cumulative distribution function or cdf of X.

If a random variable has a density, calculate the cdf using an integral.

Fact 3
For a random variable X with density fx with respect to u,

cdfx(a) = /_a fx(s) du.

From the rules of probability, the cdf has several nice properties.
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Fact 4
For a random variable X, cdf x is

1: a function whose image is in [0, 1],
2: right continuous,

3: increasing.

Example 6
For U ~ Unif([0, 1]), the cdf of U is

cdfy(a) =a-I(a € [0,1]) +1-I(a > 1).

This has a graph that looks like

Note that the cdf of U can also be written in piecewise fashion using multiple lines:

a a€l0,1
Cde(a):{ 1 a>[1 ]

Indicator functions can be used to write this function in a single line.
cdfy(a) = al(a € [0,1]) + I(a > 1).

When the cdf is a continuous function, say that the random variable is continuous.

Definition 8
If cdf x is a continuous function, then X is a continuous random variable.
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Example 7
For U ~ Unif({1,2,3,4}),

cdfy(a) = (1/4)I(a € [1,2)) + (2/4)1(a € [2,3)) + (3/4)(a € [3,4)) + 1 -I(a > 4).
Because the cdf is increasing, we can also write this as
cdfy(a) = (1/4)I(a > 1) + (1/4)I(a > 2) + (1/4)I(a > 3) + (1/4)I(a > 4).

From this form, it is much easier to see that U has a 1/4 chance of equalling each of 1, 2,
3, or 4.

The graph of the cdf looks like:

— o
—— o
————o
| S | | | | |
T T T T 1
-1 (0] 1 2 3 4 5 6

Note that it is flat in some places and has jumps in others. Call random variables with
this type of cdf discrete.

Definition 9
Suppose there exist p1, p2, ... and ay, as, . .. such that

cdfx(a) = Zpi]l(a > a;).
i=1

Then X is a discrete random variable.

Before getting to that, however, it will be helpful in this course to write Riemann integrals
and regular sums both as integrals. That way only one statement about things like expected
value is needed instead of two. To accomplish this requires a touch of measure theory.
There are two measures that probability uses the most: Lebesgue measure and counting
measure.

Lebesgue measure is like length in one dimension, area in two dimensions, volume in
three dimensions, and so on. It will be denoted with ¢ here. The following is a nice fact
about Lebesgue measure.
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Fact 5
For A C R", if the Riemann integral

/ 1dz=/ I(x € A) dz
€A z€R™

exists, then this equals the Lebesgue measure of A, {(A).

Example 8
Find the Lebesgue measure of the interval [3, 6].

Answer Because the interval is one dimensional (so [3, 6] C R), the Lebesgue measure

is the length of the interval 6 — 3 = 3. Alternatively, we could have used the integral to
get the same result:

6
£([3,6]):/3 ldr=z|$=6-3=][3]

Counting measure (often denoted #) just counts the number of elements in a set. So
#{a,b,c} = 3 and #(0) = 0. Lebesgue measure of a continuous set is found by using
Riemann integrals over that set of the constant 1 function. Similarly, counting measure
equals a sum over the elements of a set of the number 1.

Fact 6
For a set A,
#(A) =Y 1= I(ac A).
a€A a
Example 9

Find #({a, b, c}).
Answer The sum form is
#({a,b,c}) = Z]I(z € {a,b,c})

=1I(a € {a,b,c}) +1(b € {a,b,c}) + 1(c € {a,b,c})

=1+1+1=[3]

By combining these facts and generalizing to integrands more complicated than indicator
functions, a general integral can be defined.
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Fact 7
The integral

/x 9(x) du

equals fx g(x) dz when p is Lebesgue measure and the Riemann integral exists, and it
equals ) g(x) when f is counting measure.

Problems

3.1: Find the following.
a) #({a,b,c,d}).
b) #({2,4,6,...,100}).

c) £([3,6]).
d) ¢((—16,16)).

3.2: Find the following.

a) #({3,6,9,...,100})
b) £([6.5,2.1])
c) £([0,])

3.3: For W with density 12s%(1 — s)I(s € [0, 1]), what is P(W > 1/2)?
3.4: For Y with density 4 exp(—4s)I(s > 0), what is P(Y € [-2,2])?

3.5: Given X has unnormalized density ¢g(s) = exp(—3s)I(s > 0), find the normalized
density of X.

3.6: For X with unnormalized density g(s) = I(s € [—3, 3]), what is the normalized
density?
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Chapter 4

Importance Sampling

Question of the day
Estimate

I :/ Vexp(—z) dx
0
using random draws from X ~ Exp(1).

Summary

Suppose that I = [, g() dp and that X is a random variable with density fx which is
positive for all x € A where g(z) # 0. Let

. E[h(X)] = I.

+ Using iid draws from X in order to estimate [ is called importance sampling, or
IS for short.

+ For a random variable X with mean a, and & the sample average of n iid draws from
X, the standard deviation of G is SD(X)//n.

« The value of SD(X) can be estimated with the sample standard average.

Recall that X ~ Exp(1) if it has density fx(x) = exp(—z)I(x > 0). Also remember
that for a function h(X), the expected value can be found using:

o) f (@) dz = [

R

B[h(x)) - |

h(z) exp(—x)I(z > 0) do = /OO h(z) exp(—z) dz.
R 0
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So the limits of the integral for h(X) match the integral in the Question of the day. The
only question is how to choose the function h(z) to match the integral value. This is a
simple algebra problem.

h(z) exp(—z) = Vzexp(—z) = h(z) = Vz.

In other words, for X ~ Exp(1),
E[VX] = / Vzexp(—z)dr =1.
0

This integral value I turns out to be 0.8862269 . . .. Using R to estimate the integral with
the basic Monte Carlo method can be done as follows.

> results <- rexp (1076, 1)
> mean (sqgrt (results))
[1] 0.8858147

For a target integral value I and random variable X, this method of finding a function A
such that E[h(X)] = I is called importance sampling.

An important note is that importance sampling can only be used when the density fx
is positive whenever the integrand is positive.

Definition 10
Suppose that X is a random variable with density fx(z) such that g(z) > 0 implies
fx(x) > 0. Set

g(=)
h(x) = ,
(@)= @
when fx(x) > 0, and to o otherwise. Then E[h(X)] = I, where

I:/g(x) dxr or I:Zg(i).

The technique of generating X1, ..., X,, iid X and then setting & = X = (X1 +
-+- X;)/n is called importance sampling, or IS for short.
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Example 10
Use IS to estimate

I:/ exp(—z'?) dz,
0

using exponential random variables with rate 1.

Answer An exponential random variable of rate 1 (write X ~ Exp(1)) has density
fx(x) = exp(—z)I(x > 0). This means that

exp(—z'?)I(z >
exp(—z)I(z > 0

So for X1, Xo, ..., X, iid Exp(1),

?) = exp(—[z'? — z])I(z > 0).

i _ ep(-[X1? = X)) + -+ exp(—[Xh? - X,

is an importance sampling estimate of /.

Example 11
How can I estimate S = Z?zl Vi using draws from X ~ Unif({1,2,3,4,5,6})?

Answer Here the density of X (with respect to counting measure) is fx (i) =
(1/6)I(i € {1,...,6}). So h(i) = 6v/i works for the importance sampling function.
Drawing X1, ..., X, iid Unif({1,...,6}) then yields

=6(V/X1+ - +VXn)/n

as an estimate of S.

4.1 Error in the method

Recall the basic Monte Carlo method for estimating a value a.
1: Create a random variable X such that E[X] = a.
2: Draw X1, X5, ..., X, iid from X.
3: Thena = (X + --- + X,,)/n is an estimate of a.

The Strong Law of Large numbers guarantees that ¢ will converge to a as n goes to
infinity, what it does not say is how quickly that convergence occurs.

One common way of measuring how far a random variable is from its mean is the
standard deviation of the random variable. Unfortunately, not all random variables have
standard deviations! But if they do, then they obey certain rules that will be helpful here.
The first rule tells us how the standard deviation scales.
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Fact 8
Suppose X has standard deviation SD(X). Then for any n > 0,

SD(X/n) = SD(X)/n.

The second rule tells us how standard deviations add.

Fact 9
Suppose X1, ..., X, are independent random variables with finite standard deviations.

SD(X1 4 --- 4 Xn) = /SD(X1)2 + - - - + SD(X,,)2.

Combining these facts tells us how far away our estimate is from the true an-
swer.

Fact 10
Suppose that E[X] = a, X3,...,X,, areiid X and @ = (X; + --- + X,,)/n. Then
SD(a) = SD(X)/+/n.

Proof. Using our two rules

SD(a) = % SD(X1 + -+ + X,)
_ V/SD(X1)? £+ £ SD(X,,)?

nSD(X)2  SD(X)

n vn
O

This says that the error in a Monte Carlo simulation goes down as the square root of the
number of samples. This is extremely slow! For comparison, the error in the trapezoidal
method for estimating the value of a one dimensional integral goes down as the square of
the number of samples. People use Monte Carlo methods not because the error rate is good
(it’s not) but because the same error rate applies, regardless of what dimension we are in.

4.2 Estimating the mean and standard deviation

In practical problems, it is a harder problem to calculate the error than the original integral!
So instead, try to estimate the standard deviation from the data. Suppose that X1, ..., X,
is a set of iid draws from X.

The sample standard deviation is a formula from statistics:
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For a vector of data x in R, this sample standard deviation can be computed with the sd
command.

sd (x)

Recall that in R a command like rexp (30, 2) will generate 30 iid draws from an Exp(2)
distribution. Here the rexp function has a built-in parameter that gives the number of
samples.

However, many functions in R have no such parameter. In this case, the replicate
command can be used to repeatedly call a function.

For instance, the following function rolls three fair six sided dice, and adds the result
together.

monte carlo draw <-— function () return (sum(floor (runif (3) =* 06)
+ 1))

The following then independently calls this function 1000 times. The resulting vector
can then be used as part of a sample average to estimate the mean and standard deviation
of the resulting estimate.

x <— replicate (1000, monte_ carlo_draw())
mean (x)
sd(x) / sqgrt (length(x))

Note that sd (x) gives an estimate of the standard deviation of . So for the standard
deviation of the sample average, we divide by y/n. That is, the error in mean (x) is
sd (x) /sqrt (length (x) ). We write the final result as

0.3357 £ 0.09367

Of course, 0.09367 gives the impression that this estimate is far more accurate than it
really is. Rarely is more than the first digit able to be kept in this estimate. A better way of
representing it is:

0.34 £ 0.09.

In the next section we will show how to calculate the standard deviation exactly, and
show how a proper choice of importance sampling function is essential to keeping the
error small.

Problems

4.1: Suppose we want to estimate

I :/ 322 dx.
z€l0,2]

a) Using Us ~ Unif([0, 2]), find hsy such that E[ho(Us) = I].
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4.2:

4-3:

4.4:

4.5:

4.6:

4.7:

4.8:

4.9:

4.10:

b) Transform the integral using s = x/2 into an integral over [0, 1], and then find
h1 such that E[h(U;)] = I where Uy ~ Unif([0, 1]).

Suppose we want to estimate
100

S=> i
i=1
Create a random variable X and function h such that E[h(X)] = S.

Consider the integral

1
iy
]R].+£L’

a) Say Y ~ Cauchy, so fy(s) = [(7/2)(1 + s?)] L. Find a function h(Y") such
that E[h(Y)] = I.

b) Use Wolfram Alpha to find the maximum value of h(Y') for Y € R.

For the integral
I= exp(—\x|),

given that X is a standard Cauchy random variable, find h such that E[h(Y)] = I.

Suppose SD(X) = 3.2and X, ..., X are iid as X. What is the standard deviation

of
X1+ + Xy,

10

Suppose that Y has standard deviation 4.2. What would be the standard deviation
of the sample average of 24 iid draws from Y?

Estimate [ exp(—x3/?) dx using T ~ Exp(1) and importance sampling with 1000
samples.

Estimate [ exp(—24/x) da using T’ ~ Exp(1) and importance sampling with 1000
samples.

Write R code to estimate fol exp(y/r) dx using 1000 draws. Estimate the error and
report your answer in the form a £ b.

Write R code to estimate fol 1/(1 4+ \/z) dx using 1000 draws. Estimate the error
and report your answer in the form a £ b.
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Calculating the standard deviation
exactly

Question of the day
Consider

I= /000 Vrexp(—x) dx.
Let X ~ Exp(1) and Y ~ Exp(2). Then
EVX] =ENVY exp(Y) =1
give us two ways of using importance sampling to find I. Which of these ways is better?

Summary

o The Law of the Unconscious Statistician is

E[h(X)] = / h(s) fx(s) dp.

s

« The n-th moment of a random variable X is E[X"].

+ The variance of a random variable X is the second moment minus the square of the
first moment.

« The standard deviation of a random variable X is the square root of the variance.

Last time some of the rules for standard deviations were discussed. Here standard
deviation will be defined precisely, and methods for calculating it exactly will be given.
Start by showing how a mean of a function of a random variable can be turned into an
integral.
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Theorem 2 (Law of the unconscious statistician)
Suppose X has density fx (z) with respect to . Then

E[h(X)] = / h(s)fx(s) dps.

This is called the Law of the Unconscious Statistician because the user just replaces
each instance of X inside the expectation with an instance of s inside the integral without
thinking about it. Consider the following example.

Example 12
If X has density fx with respect to u, what is E[X /(1 + X)]?

Answer By the Law of the Unconscious Statistician, this is

X S
" [Hx} :/Seﬂms fx(s) ds.

Here the X/(1 + X) inside the mean became s/(1 + s) inside the integral. Multiply by
the density of X, and integrate over all possible s, and you have written the mean as an
integral!

A common way of measuring how far a random variable is from its mean is to use the
standard deviation. This can be written in terms of the moments of a random variable.

Definition 11
The ith moment of a random variable is E[X].

If the first and second moments of a random variable exist, then the random variable
has a variance.

Definition 12
A random variable X has variance

V(X) = E[(X - E(X))?).

When V(X)) = oo, say the variance is infinite or does not exist.

Because of the square, variance will have units that are the square of the units of X. To
get this back down to the same units, we take the square root.

Definition 13
The square root of the variance of a random variable is the standard deviation. That is,

SD(X) = /V(X).
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There is a formula for the variance that is somewhat easier to use in prac-
tice.

Fact 11
Suppose X has finite first and second moments. Then

V(X) = E[X?] - E[X]%

Example 13
Find the variance of X with density fx(s) = 3exp(—3s)I(s > 0).

Answer Since the density is positive over [0, 00), we know that the density is with
respect to Lebesgue measure. Therefore,

E[X] = /Rs -3exp(—3s)I(s > 0) ds = /000 3sexp(—3s)ds =1/3

E[X?] = /]1{82 -3exp(—3s)I(s > 0) ds = /OOO 3s? exp(—3s) ds = 2/9

Hence the variance is (2/9) — (1/3)?2 = 1/9 =|0.1111...|

Recall that the expectation operator is linear, meaning that when we shift and scale the
random variable, we shift and scale the mean by the same amount:

Elc1 X + 2] = alE[X] + ca.

Variance and standard deviation are not linear operators, but the effects of scaling and
shifting on their values are known.

Fact 12
For a random variable X where ¢; and ¢y are real numbers

V(er X + ¢2) = &AV(X)
SD(c1 X + ¢) = |e1| SD(X).

5.1 Calculating error for importance sampling
Suppose f(x) > 0 implies that fy/(z) > 0, then the importance sampling function A is

where f(w) is positive, and 0 if f(w) = 0.
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Then the point of building the IS function A is that when it is applied to W, the mean of
the resulting new random variable is exactly the integral being estimated.

B =1= [ S0

z: fyy () >0 fw(z)

fw(x) de = /Rf(x) dz.

What about the standard deviation of h(W)? This will be

SD(h(W)) = /A(W)? — E(h(W))? = \/h(W)? - I°.

There is nothing that can be done about the I? part, that is fixed, so the error is controlled
by the size of the second moment of h(W). That is, E(h(W)?) controls how big the error
will be. If this is close to 2, then the error is small, but if it is larger, that spells trouble.

Note
2 _ f@@) _ [ @,
ElR(W)T = /:v:fw(x)>0 (fW(@) fuw (@) do = /]R fw () ¢

This means that if the density fyy(x) is small compared to f(z), then f(x)/ fw (x) will
be very large. It is even possible that if W has too small a density, that E[h(WW)?] = cc.

To understand how this works with IS, consider the question of the day. This problem
gave two random variables (X and Y) from different distributions (Exp(1) and Exp(2)) for
use in estimating an integral.

The density for X is exp(—x)I(z > 0), so

Vvzexp(—z)l(x > 0)
exp(—z)I(z > 0)

hl (.r) =

= zl(z > 0).
The density for Y is 2 exp(—2z)I(x > 0), so

JEesp(=a)(z > 0)
2exp(—2z)I(z >0

ho(z) = = (1/2)vz exp(z)I(x > 0).

In both cases, the mean of the resulting random variables is I.
E[hi(X)] = E[he(Y)] = I.

However, the standard deviations are very different!
Bl (X)?) = E[(VX)") =E[X) = | sexp(-a)ds =1,
>0

while
E[ha(Y)?] = E[(VY exp(Y))?] = E[Y exp(2Y)]

Which evaluates to
/ xexp(2z) exp(—z) dx = / zexp(z) de = 0.
x>0 x>0
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So the standard deviation using Y will be infinity! The reason it is better to use X than
Y here is that the density of Y exp(—2x) goes to zero much faster than the integrand

V' exp(—z).

Another way of thinking about this: Since Y has rate 2, it rarely samples from large
values like 4.1. When it does, the value has to be weighted to v/4.1 exp(4.1) = 122.17.. ..
So we have a small chance of seeing large values that affect the average a lot. That’s why
the variance is infinite.

The best random variables for IS are ones where the tail goes to zero at roughly the
same rate as the integrand that we are targeting. The closer we get to the true answer, the
less variance we will have in our result.

Problems

5.1: Let Y ~ Exp(2).
a. Set up the integral for the fourth moment of Y.
b. Solve the integral using WolframAlpha.

5.2: Suppose X has density

;\/Eexp(—a:)]l(a: > 0).

a. Set up the integral for the fifth moment of X.
b. Solve the integral using WolframAlpha.

5.3: Suppose X has mean 4.1 and standard deviation 1.2, and X7, ..., Xj¢ are iid X. Let
Y = (X1+"'+X10)/10

a) Find E[Y].
b) Find SD[Y].

5.4: Let W have mean -2.3 and standard deviation of 4. For Wy, ..., Wiy iid W,

a) Find E[W].
b) Find SD(WV).

5.5: Let U ~ Unif([0, 1]) (so it has density fi(u) = I(u € [0, 1]).) Find the ith moment
of U.

5.6: Find the variance of U ~ Unif([0, 1]).

38 253



Chapter 6

Estimating Probabilities

Question of the day

Suppose bacteria are growing in a petri dish at the following locations in a petri dish
normalized to lie in a unit square:

(0.4,0.3), (0.5,0.5), (0.1,0.8), (0.2,0.9), (0.6, 0.7)

Is there enough evidence to reject the null hypothesis that the bacteria locations are
independently uniform over the dish?

Summary
Probabilities are just the expected value of indicator functions. To find P(X € A), use

P(X € A) =E[I(X € A)].
An example of where Monte Carlo is used to find probabilities is in p-values.

« Given a set of data, a null hypothesis is a statistical (probabilistic) model of how
the data was generated.

« A test statistic is a function of the data that can be used to determine if a set of data
comes from a model.

+ The p-value for a particular dataset, test statistic, and statistical model is the proba-
bility that a draw from the statistical model is greater than the test statistic applied
to the data.
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Suppose the goal is to estimate the probability that an event occurs. For instance, suppose
I want to know P(X < 4) where X ~ Unif({1,2,3,4,5,6}).
Suppose the die is rolled eight times, with the result:

4,4,3,5,5,6,2,3.
Replace each value with a 1 if it is at most 4, and a O otherwise. The sequence is then
1,1,1,0,0,0,1, 1.

The sample average of these numbers is 5/8, which is an estimate of the probability that
the roll was at most 4.
Recall that we can use the indicator function to turn our X; valuesin {1,2,...,6} into
1’s and 0’s. If we make
B =1(X; < 4),

then
(X1,...,Xg) =(4,4,3,5,5,6,2,3)

makes
(B1,...,B;) =1(1,1,1,0,0,0,1,1).

A random variable that is either o or 1 is called a Bernoulli random variable.

Definition 14
If a random variable B € {0, 1}, then say that B has a Bernoulli distribution with
parameter p (write B ~ Bern(p)) if P(B = 1) = p.

This arises, for instance, in the problem of finding p-values in frequentist statistics.

6.1 Calculating a test statistic

Now consider the question of the day. The goal is to test some spatial data to see if a
particular model is reasonable. The statistical model in the question to be tested says that
the points are iid drawn uniformly from the unit square. This statistical model is called the
null hypothesis. In Fisher-style frequentist statistics, the plan is to use the data to decide if
there is enough evidence to reject the null hypothesis. To test if this is true, it is necessary
to have something called a test statistic.

Definition 15
A test statistic is any function of the data which is used to determine if there is enough
evidence to reject a hypothesis.
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In the case of the Question of the Day, there are several ways to construct a test statistic.
One simple way is to just add the distances between all pairs of points. Call this test statistic
S. If the points in R? are p1, ..., py, then the test statistic can be described as:

S = dist(p;, p;)
Di,Pj

In R, the first step is to input the data. The combine command, ¢, can be used to turn
values into vectors. For instance, the x and y coordinates can be input into R as follows.

xl <= ¢(0.4, 0.5, 0.1, 0.2, 0.6)
X2 <= ¢(0.3, 0.5, 0.8, 0.9, 0.7)

These can then be combined into a matrix of values with the cbind command.
cbind (x1, x2)

The matrix created

04 0.3
0.5 0.5
0.1 0.8
0.2 0.9
0.6 0.7

has 2 columns and 5 rows.
To use a function on every row of the matrix, the apply command can be used. Consider
the following:

apply (cbind (x1, x2), 1, sum)
which returns

0.7 1.0 0.9 1.1 1.3
The second parameter value 1 in apply indicates that the function should be applied to
every row. So these five numbers are the sums of the two columns for each of the five
rows.

If instead the function is to be applied to every column, use 2 as the second parameter
value.

The function apply can be used with a custom function. The following returns x1 - x2
for each row of the matrix.

apply (cbind (x1, x2), 1, function(x) return(x[l] - x[2]))
which returns
0.1 0.0 -0.7 -0.7 =-0.1

To calculate the test statistic, it is necessary to calculate the distance between a point
and all the points recorded as rows of the matrix. The distance between two points is

dist((z1,91), (z2,52)) = V/ (21 — 22)% + (y1 — y2)*.

The following function does this computation.
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sumdist <— function (pt, mat) {

return (

sum (
apply (mat, 1, function(x) return(sgrt ((x[1l] - pt[l])"2 +
(x[2] - pt[2])"2))

)

}
Test this out:

A <— cbind(x1, x2)
sumdist (¢ (0.4, 0.3), A)

which returns

1.886371

as the answer.
So now, use this function with apply to get the sum over all pairs of points. Since
sumdist takes two arguments, it is also necessary to tell it that the mat argument is A.

sum (apply (A, 1, sumdist, mat = A))
which returns

8.41703

There’s still one problem: this adds up all pairs of points twice, so it is necessary to
divide by two to get our test statistic. Putting it all together gives the following function.

testS <-
function (A) return (sum(apply (A, 1, sumdist, mat = A)) / 2)

Then

testdata <- testS(cbind(x1l, x2))
testdata

returns
4.208515

which is the value of our test statistic for this data.

6.2 Estimating a p-value

The next question is what should be done with this number? Is 4.208515 large? Is it small?
One way to measure this is with a p-value, which is the probability that a draw from the
statistical model has test statistic value greater than the test statistic applied to the actual
data.
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Definition 16

The p-value for a set of data, a statistical model, and a test statistic is the probability
that the test statistic applied to a draw from the statistical model is greater than the test
statistic applied to the data.

If this p-value is small, then that is typically taken as evidence against the statistical
model being correct.

To understand this, one way to start is to look at what the distribution of the sum of
these distances looks like.

Suppose the model that we are trying to test is that the points are uniformly distributed
over the unit square. Then we can draw points P uniformly from the unit square and then
calculate the sum of the distances between them.

generateS <— function () {
# Draw 5 uniform random points
ul <= runif (5)
u2 <-— runif (5)
# Find their S value
return (testS (cbind (ul, u2)))
}

Now generate many iid draws from the distribution of the test statistic and use the kernel
density estimate to get an idea of how the test statistic behaves under the null hypothesis.

n <—= 1000

results <— replicate(n, generateS() > testdata)
mean (results)

sd (results) / sqgrt (results)

Often the null hypothesis is rejected when the p-value is below 5%. Here the p-value is
about 83%, so there is not enough evidence to indicate that the data does not come from
the null hypothesis.

A plot of these results can be made as follows.

ggplot () +
geom_density (aes (results), color = "blue", lwd = 2) +
theme minimal () +
geom_vline (aes (xintercept = testdata), color = "red")
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Then the p-value estimate is the percentage of values that falls to the right of the red
line.

6.3 Another example

Suppose that the statistical model for values Wy, Wy, W3, Wy is that they are iid uniform
over [0, 1]. Since each has average value 0.5, a test statistic might be the sum of the absolute
values of the difference between the value and o.5.

A function to calculate this test statistic for a vector w is as follows.

testW <- function(w) return(sum(abs(w - 0.5)))
For data (0.3,0.9,0.1, 0.2) the test statistic is found by:

w <- ¢(0.3, 0.9, 0.1, 0.2)
testdata <- testW(w)

The p-value could then be estimated as:

n <—= 1000

results <— replicate(n, testW(runif(4)) > testdata)
mean (results)

sd(results) / sgrt (length(results))

The result of my run was about 0.15 &+ 0.1.

6.4 Monte Carlo for big data
Suppose that I have a quadrillion data points,

X1, Xo,..., Xqg15,
all of which are real numbers between o and 1 inclusive, and I am interested in knowing

what percentage of them are greater than 0.6. Call this percentage p.
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Now p could be found exactly:

1 1015
pzﬁﬁ§:m&>®.
=1

Of course, if the data is spread out over secondary storage, this might take an unacceptably
long time.
Consider drawing I ~ Unif({1,2,...,10%}), then

p=E[I(Xp > 0.6)].

This allows tight estimation of Big Data values without pulling out every item.

6.1:

6.2:

6.3:

6.4:

Problems

Write a Monte Carlo algorithm in R to estimate P(U; + - - - + Ug > 5) where the U;
are iid Unif([0, 1]).

Write code in R to estimate P(7} + - - - 4+ T10 < 4) where the 7T; are iid Exp(2) using
the rexp function.

Suppose we model Uy,...,U, given parameter 6 as iid Unif([0,6]). Given
Ui, ...,U,, our test statistic is

T = min{Uy,...,U,}

We are trying to test if § = 10, and we consider high values of 7" to be evidence
against this hypothesis.

a) If n = 8, what is the p-value for a test statistic of 4? (Calculate this value
exactly as a probability.)
b) Use R to test your last answer to the last part by writing a function to generate

variates from 7', and then use Monte Carlo to estimate the p-value.

Suppose we model T1,...,T,, given parameter \ as iid Exp()). Given data
T1,...,T,, our test statistic is S = 11 + - - - 4+ 1;,. We are trying to test if A = 2,
and we reject if S is too small.

If n = 20, what is the p-value for a test statistic of 6.1.
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The Inverse Transform Method

Question of the day

Suppose X has density
Ifx(s) =2sl(s € [0,1]).

How do I draw random variates from this density?

Summary

« The inverse transform method, or ITM works as follows. Let U ~ Unif(][0, 1]).
Given a random variable X, let Y be the smallest value of a such that

P(X <a)>U.
Then Y has the same distribution as X.

+ The pseudoinverse of a cdf Fx is

Fy'(b) = inf{a: Fx(a) > b}.

« If X is a real-valued random variable, then X ~ Fy'(U) where U ~ Unif([0, 1]).

7.1 Introduction
Consider how to generate a random variable X that comes from a particular distribu-
tion. First consider how to deal with one dimensional random variables. Call these 1-D

distributions for short.
As usual, U ~ Unif([0, 1]) means that U is a uniform random variable over the interval

[0, 1]. It turns out that by taking a function and applying it to U, it is possible to generate
draws from every real-valued random variable!
For example,

X =I(U € [0,1/3)) + 2I(U € [1/3,2/3)) + 3I(U € [2/3,1])
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results in X ~ Unif({1,2,3}). Or
W =(1/2)In(1 -0)

results in W ~ Exp(2).
The above examples are instances of the Inverse Transform Method, which is a general
way for turning a uniform random variable over [0, 1] into any real-valued random variable.

7.2 Random variate generation on computers

If you are using any modern computing language, there are packages that will allow you
to sample from the common distributions. For instance, R allows generation from many
different distributions. The format is to use r followed by the distribution name. So for
instance, runi f draws from the continuous uniform distribution. Other examples include
rcauchy, rnorm, rbeta, rgamma, rexp, and rpois

If it was necessary to work from scratch to generate random draws from every distri-
bution, Monte Carlo simulation would be incredibly difficult. Fortunately, it turns out
uniform random variables can be used to generate from all 1-D distributions. Every other
distribution can be generated from by taking a computable function of a uniform random
variable.

Every major language has a built-in function for generating uniforms over [0, 1].

C/C++ rand ()

R runif (1)

MATLAB rand () or random ()
Python random ()

7.3 Inverse Transform Method for discrete random variables

Consider the following distribution:
P(X =1)=0.2, P(X =2)=0.3, P(X =3) =0.5.

This can be represented pictorially using line segments.
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Now suppose that a draw from X is made, and then given X, a draw from Y is made
uniformly over the line segment associated with it. So [Y|X] ~ Unif([0, fx (X)]).

0.5
0.4
03 i
-1
>
- 2
0.2 = 3
0.1
0.0

For instance, if X = 3, then Y is uniform from 0 to 0.5, and might be ¥ = 0.23, in
which case the graph looks like:
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Such an (X,Y") point will be uniform over the three line segments.
More generally, the following fact holds.
If X has density fx, and [Y|X] ~ Unif([0, fx (X)]), then (X,Y) ~ Unif({(z,y) : 0 <

y < fx(2)}).
The joint density of (X,Y") will be

faxy(@,y) = fx(@) fyix=2(v)

1
= fx(x)mﬂ(y € [0, fx(z)])

=10 <y < fx(z)),

which is the uniform density over {(z,y) : 0 <y < fx(x)}.
So how does that help us to generate from X? Well, suppose the three line segments
were laid end to end:
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Then it is easy to draw uniformly from the line segment of length 1, just draw U
uniformly over [0, 1]. Then see which line segment the point lands on, and use that to
figure out X.

This gives rise to the following function for generating variates from X.

hU)=1-1U € [0,0.2)) +2-I(U € [0.2,0.5)) + 3 - L(U € [0.5,1])

The generalization of this procedure for discrete random variables is called the Inverse
Transform Method, and operates as follows.

1. Generate U uniformly over [0, 1].

2. Return as output the smallest number a such that P(X < a) > U.

7.4 Inverse Transform Method for continuous random variables

Okay, so that works if X is discrete, what about if X is a continuous random variable?
Here is cool thing: the IVM still works exactly as defined above for continuous random
variables!

To see why, first note that our first fact still holds. That is, for X with density fx, and
[Y|X] ~ Unif(]0, fx(X)]), then (X,Y) is uniform over

{(z,y): 0 <y < fx(2)}

In other words, to draw a value X from a density, first draw (X,Y") from the area
underneath the density, then throw away the Y coordinate to get the result.

For instance, if the density was 122%(1 — z)I(z € [0, 1]), then the goal is to sample
uniformly from the shaded region.
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Because this is a density, the area of the shaded region under the density equals 1. In
the next picture, 80% of the area under the shaded region is to left of the vertical red line.

0.5

0.0

0.00 0.25 0.50 0.75 1.00

By the way, the g3 = 0.7876 . .. coordinate of this vertical line can be found by giving
the following command to WolframAlpha at www.wolframalpha.com:

solve integral 12xx"2%(l-x) from 0 to b is equal to 0.8

Now suppose that U ~ Unif([0, 1]) is drawn, and a is the smallest number such that
P(X < a) > U. Because the density is continuous, it is possible to get P(X < a) = U.
Then the picture looks like this, where the area under the shaded region to the left of the
blue vertical line is exactly U.
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Note that P(a < z9g) = P(U < 0.8) = 0.8. Moreover, there was nothing really special
about the value 0.8 there. So the way a was chosen, it has exactly the same distribution as
X. Thatis, a ~ X. This means that the ITM works equally well for discrete and continuous
random variables!

This can be used to answer the question of the day as follows.

Question of the Day

Note that for a € (0, 1),

P(Xga):/a fx(s)ds
:/a 2sl(s € [0,1]) ds
:/aZSds:sglgzaz.
0

So if A2 = U then A = VU.
So the algorithm for generating from density fx is

1. Draw U <« Unif([0, 1])

2. Return ﬁ

Formally, the theorem establishing the validity of the ITM can be stated as follows.

Theorem 3 (Inverse Transform Method)
Suppose U ~ Unif([0, 1)). Let A be the smallest value such that P(X < A) > U. Then
X ~ A
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Proof. The plan is to show that (Va € R)(P(X < a) = P(A < a)). Start by proving that
(U<P(X <a) e (A<a).

Let a € R. Suppose U < P(X < a). Then A is the smallest number such that
U<P(X <A).So A < ain this case.

Now suppose that A < a. Then (X < A) — (X <a),soP(X < A) <P(X < a).But
P(X <A)>U,soU <P(X <a).

We have shown that A < a if and only if U < P(X < a). Taking the probability of
these two expressions gives

P(A<a)=PU <P(X <a)) =P(X <a).
(The last equality follows from the fact that for any b € [0, 1], P(U < b) = b.) O

7.5 The pseudoinverse of a function

Another way to write the Inverse Transform method is using a pseudoinverse of the cdf of
the random variable.
The pseudoinverse of a right continuous increasing function f is

f~4b) = inf{a : f(a) > b}.

The inf stands for infimum, and means the best (largest) lower bound for a set of values.
But you really need to know is that where the function f is strictly increasing, then f has
aregular inverse and the pseudoinverse is the same function there. However, when f is
flat or has jumps (like the cdf for discrete random variables), then the pseudoinverse is the
location of the gap, or the smallest value of the flat part.

Consider the following examples.

« Say F'x(a) = [1—exp(—a)|l(a > 0). Thenifa > 0, then F'x (a) is strictly increasing,
so to the pseudoinverse is just the regular inverse:

1—exp(—a) =b=a=—In(l-0>).
F7(b) = - b<0
F71(b) = —1In(1 — b) b> 0.
Since P(U < 0) = 0, ITM becomes,

—In(1 - U) ~ Exp(1).

+ Suppose
cdfy(a) = 0.3I(a > 1) 4+ 0.70(a > 2).
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This cdf has a jump of size 0.3 at a = 1, and a jump of size 0.7 at a = 2. So the
pseudoinverse is

F~1(b) =0forb <0
F71(b)=1for0<b<0.3
F7lb)=2for0.3<b<1

Hence the ITM method for generating from W is to draw U ~ Unif([0, 1]), and use

W=1-1(U €[0,0.3)) +2-L(U € [0.3,1))

In terms of the pseudoinverse, the ITM theorem becomes the following.

Fact 13
For U ~ Unif([0,1]), edf ' (U) ~ X.

7.6 The Fundamental Theorem of Simulation

The fact that a uniform can be transformed into any real-valued variable is called the
Fundamental Theorem of Simulation.

Theorem 4 (Fundamental Theorem of Simulation)
Let U ~ Unif([0, 1]). Then for any computable random variable X there is a computable
function ¢ such that X ~ ¢(U).

Why is this theorem so important to simulation as to be called fundamental? Because
this theorem means that only the ability to generate uniforms over [0, 1] is truly necessary
to generate from any distribution. It is nice to have functions like rexp and rbeta,
but truly only runi £ is needed. That means that there needs to be only one method of
generating pseudorandom variables for uniforms, and not a different method for every
distribution.

Problems

7.1: Suppose P(A = —1) = 0.6 and P(A = 1) = 0.4. Find a function h(u) such that
h(U) ~ Awhen U ~ Unif([0, 1]).

7.2: Consider the following random variable W':

i P(W =)
1 0.6
2 0.2
3 0.2

Find a function g(u) such that g(U) ~ W, when U ~ Unif(]0, 1]).
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7.3:

7-4:

7-5:

7.6:

For U ~ Unif([—1,1]), find the density of UZ.

Use the inverse transform method to find ¢ such that g(U) has density
(2/3)a=*1(a € [0,1]).

Find a function ¢ such that g(U) has density
f(s) = (1/s)(s > 1).
assuming U ~ Unif([0, 1]).

Find a function g such that g(U) (for U ~ Unif([0,1])) has density f(s) =
(1/4)s%I(s € [0,2]).
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Chapter 8

Acceptance/Rejection

Question of the day

Suppose that an iid stream of random variables X, Xo, . . . that have the Exp(2) distribution.
Create an algorithm for sampling from Y which has the distribution of X but conditioned
to lie in [1, 2]. Write Y ~ [X|X € [1,2]].

Summary

The Acceptance Rejection (AR for short) protocol is a method for drawing from distribu-
tions conditioned on having some property. Let X ~ 1 have the desired distribution, and
B be a set of values so that X € B is the desired property. Then

Acceptance-Rejection  Input: u, B

1) Repeat

2) Draw X + p
3) Until X € B

4) Return X

has output [X|X € BJ.

Acceptance rejection (AR) is one of those algorithms that seems too good to be true, in
that the algorithm is often the first thing tried for real problems.

For instance, suppose that you have access to a fair six sided die. That is, you can
generate uniformly from {1,2,3,4,5,6} as many times as you like. Now suppose your
goal is to draw uniformly from {1, 2, 3,4}. A natural algorithm would be to roll the die.
See if the roll falls into {1, 2, 3,4}. If it does, return that roll as the final answer. If not, just
reroll the die. This is the essence of AR.

In the question of the day, the user has access to a stream of random variables X7, Xo, ...
such that each X is independent and has an Exp(2) distribution. The goal is to get a draw
from Exp(2) conditioned to lie in [1, 2].
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An AR algorithm first draws X and then checks its value. If X is in B, stop and output
Xj. (Say that the algorithm accepts X;.) Otherwise, the algorithm rejects X; and then
moves on to Xo. If X is in B, stop and output X5. Otherwise, reject and move to X3, and
SO on.

There are several ways to write this algorithm in pseudocode. One way that does away
with the subscripts on the X uses recursion.

Definition 17
A recursive algorithm calls itself while running (possibly with different parameters).

A classic example of a recursive algorithm is finding the factorial of a nonnegative
integer. This factorial function is usually denotedasn! =n-(n—1)-(n —2)--- 1.

Factorial Input: n

1) Ifn = 0 then output 1
2) Else, output n - Factorial(n — 1)

The recursive form of AR looks like this.

Acceptance-Rejection  Input: u, B

1) Draw X < p
2) If X € B, then return X
3) Elselet X < Acceptance-Rejection, return X

Example 14
For X ~ Exp(2), generate from [X|X € [1,2]].

qotd

1) Draw X < Exp(2)
2) If1 < X < 2thenreturn X
3) Else X < qotd, return X

In practice, calling functions recursively is relatively slow because of the overhead of
setting up a function in most computing languages. Therefore, repeat or while loops give
an alternate way to write this pseudocode.

qotd_loop

1) Repeat

2) Draw X < Exp(2)
3) Untill1 < X <2
4) Return X
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In R, this could be implemented in the following code.

gotd <— function() {
# Draw from exponential of rate 2 conditioned to lie in 1, 2
accept <— FALSE
while (laccept) {
x <— rexp(l, 2)
accept <= (x >= 1) & (x <= 2)
}
return (x)

}
A quick test to see if it is working properly:

results <— replicate (1000, gotd())
mean (results)
sd (results) / sqgrt (length(results))

This returned 1.351 £ 0.009 when I ran it. The true expected value of this random

variable is
Jzexp(—2)I(z € [1,2]) dx

Jexp(=2)I(z € [1,2]) dx

= 1.34348

so it is pretty close.
The AR method works for both continuous and discrete problems.

Example 15

Suppose the user has the ability to draw X ~ Unif({1,2,3,4,5,6}), and wants to
generate a random variable Y ~ Unif({1,2,3,4,5}). It is easy to check that Y ~
[X|X € {1,2,3,4,5}]. Leti € {1,2,3,4,5}. Then

P(X =i,X € {1,2,3,4,5})
P(X € {1,2,3,4,5})
(1/6)I(i € {1,2,3,4,5})
5/6

1
= #l(i € {1,2,3,4,5))

P(X =i|X € {1,2,3,4,5}) =

which is just the uniform distribution over {1, 2, 3,4, 5}.
Because generating from Y is the same as generating from X conditioned to lie in a
set, acceptance rejection can be used.

Five sided die

1) Draw X <« Unif({1,2,3,4,5,6})
2) If X <5 then return X
3) Else X < Five sided die, return X
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To why this algorithm works, consider P(X = 2). First, note that the algorithm
terminates with probability 1. This is because for the algorithm to not terminate, all
the rolls of X must be 6, 6, 6, ..., which happens with probability 0 for an infinite stream
of rolls. So the algorithm terminates with probability 1. Either the original roll of the die
is 2, or the algorithm calls itself recursively. Let Y be the output of the algorithm, W the
draw of X in line 1, and R the draw of X in line 3. Then fori € {1,2, 3,4, 5},

P(Y = i) = P(W =) + P(W = 6)P(Y = i)
B(Y = i) = (1/6) + (L/6)B(Y = i)
(5/6)P(Y =1i) =1/6
P(Y =) = 1/5.

More generally, the following theorem holds for the acceptance rejection algorithm.

Theorem 5 (Acceptance/Rejection)
Suppose for X ~ p, P(X € B) > 0. Then the following algorithm

Acceptance-Rejection  Input: u, B

1) Draw X < p
2) If X € B, then return X
3) Elselet X < Acceptance-Rejection, return X

has output Y ~ [X|X € B] with probability 1.

Proof. Since P(X € B) > 0, the algorithm will terminate in finite time with probability 1.
Let C be a (measurable) subset of B. Then consider the probability that the output Y’
falls into C. Let W be the value of X in line 1, and R be the value of X in line 3.

( ) =PW eC)+P(W ¢ B)P(ReC)
( )=PW eC)+P(W ¢ B)P(Y € C)
(1-P(W¢B)P(YeC)=PWeC)
P(WeC)
( ) = PV € B)

'%

P(W € B)
=P(W e C|W € B).
Since W was a draw from X ~ p, the proof is complete. O
Notation 2

The acceptance rejection method is also sometimes called hit-or-miss because the
algorithm keeps drawing from A until we hit B. Statisticians often refer to it as just the
rejection algorithm, because they are often pessimistic folk.
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Example 16
Create an algorithm to draw Unif({1,...,7}) given the ability to draw uniformly from
{1,...,10}.

Answer Repeatedly draw from {1, ..., 10} until the result is at most 7.

Example 17
Suppose I want to shuffle a deck of cards in such a way that every King comes closer to
the top of the deck than all the Aces.

Answer Keep generating perfect permutations of the deck until all the Kings are
nearer to the top of the deck than all the Aces.

Example 18
Draw uniformly from the trapezoid connecting (0,0), (0, 1), (2,1), and (1.3,0). Call
this region B.

Answer Note that B C A, where A is the rectangle [0, 2] X [0, 1] (see the picture).

It is easy to sample from this rectangle with uniforms. Simply let Uy, Us be iid Unif([0, 1]),
then 2U; ~ Unif([0, 2]), and (2U;, Uz) is uniform over A. To be in the blue region the
point must be above the line that passes through (1.3,0) and (2, 1). Solving for this line
gives the following pseudocode.

Acceptance Rejection for rectangle

1) Repeat
2) Draw (Uy, Us) iid Unif([0, 1])
3) Until (Us > 2U7(10/7) — (13/7)).

In R this can be done with

mc <— function () {
# Draw from quadrilateral connecting (0,0), (0,1), (2,1), (1.3,0)
accept <—- FALSE

60 253



Mark Huber | Monte Carlo Methods

while ('accept) {

X <= runif (2)

accept <- x[2] > 2 * x[1] = (10 / 7) - (13 / 7)
}

return (x)

}

8.1 Running time of AR

Consider again the stream X7, X5, ... of iid random variables. Some of the X; fall into B,
and some do not. Let 7" be the smallest integer such that X7 € B, then T is the infimum
of the set {t : X; € B}. Then X7 is our output Y. That is,

Y = Xr, T:inf{t:Xt S B}

Here T is a special type of random variable called a stopping time.

Definition 18
A random variable T’ is a stopping time with respect to a stream X, Xo, ..., if it is
possible to determine if 7' = ¢ just by looking at X1, ..., X;.

The name means that at any time ¢, it is possible to decide whether to stop drawing from
the X; given the values of X1, ..., X;.

The value of 7' is the number of random variates drawn by the algorithm (including the
last) until the result is accepted. This type of random variable, where an experiment that
results in either success or failure is repeated until a success occurs, is called a geometric
random variable. The parameter p is the probability that the experiment is a success.

Definition 19
Say that 7" is a geometric random variable with parameter p (write 7' ~ Geo(p)) if for
allt € {1,2,...},

P(T=t)=p(1-p)".

Because the distribution of 7" is known, its expected value and variance are also known.

Fact 14
For T the number of draws used by the AR algorithm is Geo(P(X € B)), so E[T] =
1/P(X € B),and V(T) = P(X ¢ B)/P(X € B)2

Problems

8.1: Suppose that the function mc draws numbers uniform from {—5, —4,...,4,5}. Write
an AR code in R that makes a function mc that draws uniformly from {—1,0, 1}.
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8.2: Suppose the function testdraw draws uniformly from the integers 1 through 10.
Write a function testdraw2 in R to draw uniformly from 1 through 7.

8.3: The function rexp (1, 2) draws a single exponential random variable of rate 2. Use
AR to build a function mcexp in R that draws from an exponential random variable
of rate 2 conditioned to lie in [0.5, 1.5].

8.4: Us AR to build a function mcexp2 in R that draws from an exponential random
variable of rate 1.5 conditioned to lie in [0, 1).

8.5: Write pseudocode to draw (X,Y) ~ Unif(Q2), where Q is the trangular region
connecting (0,0), (0,1), (1,1).

8.6: Write pseudocode to draw (X,Y) ~ Unif(A), where A = {(z,y) : 0 < y < 22},
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Chapter 9

AR for densities

Question of the day

Suppose that X has unnormalized density

gx(1) =3, gx(2) =5, gx(3) = 2.

Create an AR method for sampling from X.

Summary

For two function f and g with the same domain, write f > ¢ if for all elements x of
the domain, f(x) > g(z).

Suppose that I have the ability to sample from unnormalized density gy and wish to
sample from unnormalized density gx where gy > gx. The Acceptance Rejection
method for densities is to take a draw Y from gy, then accept Y as a draw from
X with probability gx (Y) /gy (V).

Note that if ¢ is a constant that is at least gx(a)/gy (a) for all a, then gy and ¢ - gy
are the same unnormalized density, but cgy > gx.

The expected number of draws from gy used by AR for densities is E[gy (V) /gx (V)]
where Y ~ gy.

Suppose g > 0 and the area of A = {(z,y) : 0 < y < g(z)} is finite. Then for
(X,Y) ~ Unif(A4), X ~ g.

For X with unnormalized density gx and [V | X| ~ Unif(]0, gx(X)]), (X,Y) isa
uniform draw over {(z,y) : 0 <y < gx(x)}.

Start by taking a look at this unnormalized random variable. The density looks like this.
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We can take these three bars and line them up together to get one long bar of length
345+ 2 = 10, which we can then divide into pieces corresponding to the different values

for X ({1,2,3}).

I ] ] ]
I T T 1

0 3 8 10

We can draw W uniformly from [0, 10]. If it falls into [0, 3) return 1, if it falls into [3, 8)
return 2, and if it falls into [8, 10] return 3. This is exactly what the Inverse Transform
Method tells us to do. We can think of this as giving us a point uniformly drawn from the
blue lines:

Note that we only care about the horizontal coordinate of the red dot, the vertical
coordinate gives us no information.
If the lines had been the same height, things would have been easier.

]
T

N W R 1N
I
T

[
]
T
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To draw uniformly from the red dotted lines, just draw the horizontal Y coordinate
uniformly over {1, 2,3}, and then draw vertical coordinate W uniformly over [0, 6].

When does (Y, W) also serve as an (X, W) point? Sometimes, this (Y, W) point falls
off of the blue lines, in which case we reject it as a draw. But if the point works for both
red and blue lines, then accept the point as a value for red.

6T 6T

ST : o 5T

4 + : g -;reject 4+

3+ ; : 3+

2 T 2 T :

.t .t éaccept

o 1 2 3 4 o 1 2 3 4

Given Y = 3, then W must be in [0, 2] to accept. Because W is uniform over [0, 6],
the chance that this occurs is (2 — 0)/(6 — 0). This is the same as P(U < 2/6), where
U ~ Unif([0,1]). So when Y = 3, we accept when U < ¢x(3)/gy(3), and reject
otherwise.

Expanding this idea to all the possible values of Y € {1,2,3} gives the following
algorithm.

Acceptance Rejection for qotd

1) Repeat
2) Draw Y uniformly from {1, 2, 3}
3) Draw U <« Unif([0,1])

4) UntilU < gx(Y)/gy(Y)
5) ReturnY

9.1 The Acceptance Rejection Theorem for densities

Generalizing this approach gives us the Acceptance Rejection Theorem for densities. The
earliest reference to the method that I can find is here [1]. In that paper Von Neumann
does not make an overt claim to have created the method, but on the other hand he does
not reference any earlier work either.
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Theorem 6 (Acceptance Rejection for densities)
Suppose X and Y have unnormalized densities gx and gy respectively where gy > gx,
and it is possible to generate draws from Y.

Then the following algorithm generates draws from X.

Acceptance Rejection for densities

1) Repeat

2) Draw Y from unnormalized density gy
3) Draw U < Unif([0, 1])

4) UntilU < gx(Y)/gy(Y)

5) ReturnY

The output of the algorithm will have unnormalized density gx.

Proof. Let B be a measurable subset of R, and X be the output of the algorithm. Let Zy
be the normalizing constant for gy, and Zx be the normalizing constant for gx.

For X € B, either the choice of Y at the start is in B and is accepted, or the choice of Y
is not accepted, and subsequent choices puts the result in B. That is,

]P(XeB):IP(YeB,Ug gX(Y)) +IP’<U> z);g;)P(XeB)

)]P’(XEB)_IP<YEB,U§

(0) (b)
beB g}éy ' f;)}f( d'UI

(b) (
beQ géy ' ‘Zi(b) dp

_ fbeB gX(b) d“ _ beB gX(b) dﬂ
fbeQ 9x (b) du Zx beB

That means that the output has the desired density. O

Example 19
Draw X ~ z2I(z € [0,1]).

Answer Note 72I(z € [0,1]) < 1, so draw X ~ Unif([0,1]) and U ~ Unif([0, 1])
independently. If U < X2 then accept and return X, otherwise begin again.

Code in R for doing this is as follows.
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ardensity_ex <- function () {
acceptflag <— FALSE
while ('acceptflag) {
X <= runif (1)
u <= runif (1)
acceptflag <— u < x"2
}

return (x)

9.2 AR for arbitrary unnormalized densities

The theorem requires that g, > gx, but what if that is not true?
Because gy is an unnormalized density for Y, for any positive constant ¢, cgy is still an
unnormalized density for Y. In particular, if

then cgy > gx by the definition of maximum. This gives rise to an AR algorithm that
works for arbitrary unnormalized densities gy and gx.

Fact 15
Suppose gy and gx are arbitrary unnormalized densities, and for all s,
> 9x(5)
gy (s)

Then the output of

Acceptance Rejection for densities

1) Repeat

2) Draw Y from unnormalized density gy
3) Draw U < Unif([0, 1])

9 UntilU < gx(¥)/[ear (V)]

5) ReturnY

has unnormalized density gx.

The running time of the algorithm will be fastest when ¢ = max; gx(s)/gy (s), but any
c that upper bounds the maximum will do.

9.3 Using Acceptance Rejection on unbounded random variables

By combining the Inverse Transform Method and Acceptance Rejection we can generate
from unbounded random variables such as standard normals.
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Using Cauchy draws to simulate normals For instance, recall that a Cauchy random
variable has unnormalized density

1

0l@) =13

A normal random variable has unnormalized density
g2(z) = exp(—z?/2).

Unfortunately, we cannot use AR yet because for some values of z, g1 (x) < g2(z), and
for other values g2(z) < g1(x). However, we can find a constant ¢ such that cg; (z) > ga2(z)

for all x. To find this, we solve
. max{”(f”)}.
g1()

To find the maximum, we find the derivative of the ratio.

92(2) /— exp(—z° )
2] fexpl—a?/2)1+47)

= —zexp(—2%/2)(1 + 2%) + exp(—2?/2)(2z) = exp(—2?/2)(x — 2°)
= exp(—z?/2)z(1 — 2?).

So this is positive for z < —1, negative for z € (—1,0), positive for z € (0,1), and
negative again for z > 1. That implies that the function has a local maximum at -1 and at
1. Plugging -1 and 1 into g2(z)/g1(x) gives the same result: 2 exp(—1/2).

This makes
g2(x)
cg1(x)
Next we need a way to draw from the Cauchy. To do that, we find the cdf, and use the
Inverse Transform Method. First, we need to normalize the density.

o0 1 T T T
/_oo T de = aretan(@) % = 1 - (-7) = 5

= (exp(1/2)/2) exp(—2?/2)(1 + a?).
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So the normalized density is (2/7)(1 + 22)~!. This gives us the cdf:

/a 2 ! dx = (2/7)arctan(z)|% ,, = (2/7) arctan(a) — (1/2).

T 1422 o
Solving U = (2/7) arctan(a) — (1/2) gives
X =tan((7/2)(U + 1/2)) ~ Cauchy.

Putting this together gives the following algorithm.

Drawing normals using Cauchys

1) Repeat

2) Draw Uy, Us iid from Unif([0, 1])

3) X « tan((7/2)(Ur — 1/2))

4) Until Uy < (exp(1/2)/2) exp(—X?2/2)(1 + X?)

9.4 Running time

The following shows how to calculate the chance of accepting a draw from one density for
another.

Fact 16
The chance of accepting in Acceptance Rejection for densities is
Y
E [gx( )] .
gy (Y)

Proof. The chance of accepting is

PU < gx(Y)/gv (Y)) = E[I(U < gx(Y)/gv (Y))].

Note that for any fixed value y € [0, 1]:

P(U < gx(y)/9v (y)) = E[I(U < gx(v)/9v )] = 9x (v)/9v (v).

The Fundamental Theorem of Probability tells us that for any random variables E[X] =
E[E[X|Y]]. So

P(U < gx(Y)/gv(Y)) = E[E[I(U < gx(Y)/gy (V) |[Y]
= Elgx (Y)/gv (Y],

which completes the proof! O

Let’s use this theorem to say how many Cauchy random variables we need for one
normal.
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Example 20
If gy (s) = 1/(1 + s%) and gx(s) = (exp(1/2)/2) exp(—s2/2), what is the probability
of accepting?

Answer We want

= (o] - [t s

:/(exp 1/2)/2) exp(—s*/2)
1/(1+ s?)

— SEP/E) L) /exp(—82/2) ds

T

— 22 - [oorr..)

) (2/7)

9.5 The uniform perspective

In some sense, densities do not exist. They are just special cases of uniform distributions.

Fact 17
Suppose X has unnormalized density gx with respect to either counting or Lebesgue
measure. Suppose Y has distribution given X of

[Y]X] ~ Unif([0, gx (X)])-

Then (X,Y) ~ Unif({(z,y) : 0 <y < gx(z)}).

So we can always write a random variable X with a density as part of a uniform random
pair (X,Y).

Proof. If X has unnormalized density ¢gx, and [Y|X] has density

Frix=s(®) = —T(0 € D.gx (@)
gives joint density
f(X,Y) (z,y) o gX(x)fY\X:a:(y)
— gx(2)——1(y € [0, gx (2)])
gx ()

= I(y € [0, gx (2)]).

Since the joint density is proportional to an indicator function, the distribution must be
uniform over the region where the indicator function equals 1. O

This also works in the opposite direction.
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Fact 18

Suppose (X,Y) ~ Unif({(z,y) : © € A,0 <y < g(x)}) for a nonnegative g. Then
X ~g.

Proof. Suppose (X,Y) ~ Unif({(x,y) : x € A,0 <y < g(z)}). Then for a set B C A,

P(X € A) = p({(z,y) 12 € B,0<y<g(x)}) Joepalz)du

p{(zy) e e A0<y<g@)}) [ea9(@)dp

This is exactly what it means for X to have (possibly unnormalized) density g. O

Problems

9.1: The following code uses the inverse transform method to draw a sample uniformly

from
1

72

fx(z)==I(z>1)

mc <-— function() {
u <= runif (1)
return (1/u)
}
Write R code that uses this function (together with AR) to draw a sample from

unnormalized density

gx(@) = 51(r > 1)

9.2: a) Write an AR code that draws samples from the unnormalized density
1
gy (y) = Wﬂ(y € [1,2]).
b) Use 10 samples from your function to estimate E[Y].

9.3: Suppose that I have the ability to draw Y from the following density

gy (i) =il(i € {1,2,3}),
and U from Unif([0, 1]).

a) Create the most efficient AR algorithm for drawing from
gx (1) = [(14+14)/2)1(i € {1,2,3}).

b) What is the expected number of times through the repeat loops for your AR
algorithm?
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9.4: Suppose I wish to sample from the following density

gx(s) = Vlzll(z € [-2,2])

a) Create an AR algorithm for generating samples.

b) On average, how many times do you run through the repeat loop before ac-
cepting?

9.5: Consider the following unnormalized density:

fw(w) = exp(—2)[(w € [0, 1]) + exp(—2w)I(w > 1).

Now consider the unnormalized density
fr(t) = exp(=20)1(¢ > 0),

Note that for all ¢, f7(t) > fiw(¢). This looks as follows.

1.00
0.75
050

0.25

a) Consider a draw (X, Y") from underneath the density fr. What is the probabil-
ity that this falls underneath the density fy?

b) Write pseudocode for an AR algorithm that draws from W using draws from
T.

9.6: Write acceptance rejection pseudocode that uses draws from the unnormalized
density of an exponential of rate 1:

gy (x) = exp(—x)I(z = 0)

in order to draw from the beta distribution with parameters 2 and 2 which has
unnormalized density

gx(x) = z(1 — 2)I(z € [0,1]).
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9.7:

9.8:

9.9:

Suppose the goal is to use draws from unnormalized density
gA(s) = exp(—0.92)I(x > 0)
to draw from unnormalized density
g9B(s) = zexp(—z)I(z > 0)
It is not true that g4(s) > gp(s) for all s > 0, but it is true that for

95(s)
s:g4(s)>0 gA(S) ’

m =

it holds that
mga(s) > gB(s).

a) Find m and round up to four sig figs.

b) Write pseudocode for AR for using draws from A to obtain draws from B.

Create an acceptance rejection algorithm that uses draws from 7" an exponential of
rate 1 to draw from S with density fs(s) = sl(s € [0, 1]).

A double exponential random variable of rate A has density
A
fr(t) = 5 exp(=Alt)

Another way to think about it as an exponential of rate A that has a fifty-fifty chance
of being positive or negative. Pseudocode for drawing from this distribution is as
follows.

AR_dblexp_norm

1) Repeat

2) Draw 7" double exponential of rate 1
3) Draw U a standard uniform

4) UntilU < exp(=T2/2+|T|—1/2)

5) ReturnT

Write pseudocode for an acceptance rejection algorithm that uses a double exponen-
tial of rate 1 to make draws using AR from a standard normal with unnormalized
density exp(—z2/2).

9.10: Write pseudocode for an AR algorithm that uses draws from a standard Cauchy

random variable with unnormalized density
1

) =110
to sample from a double exponential random variable of rate A, with density

fr(s) = (1/2)Aexp(=Als]).
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Chapter 10

High dimensional models with known
normalizing constant

Question of the day

An experimenter believes 4 phenotypes are equally likely in the population. After testing
100 random subjects, she finds

phenotype I I HI IV
number 20 30 18 32

Find the p-value for this data with respect to the statistic
4

Sp = (Xi—25)°
i=1
Summary
Say that (Xi,...,Xx) has a multinomial distribution with parameters n and

(p1,...,pk) a probability vector, if for all i, X; ~ Bin(n,p;) and X1 + --- + X} = n.
To sample from this distribution,

1: For j from 1 to n, draw D; from (1, ..., k) using probability vector (p1, ..., pk).
2: Forifrom1tok,let X; = > 7%, [(D; = ).

Until now sampling has occurred in one dimension, but most of the actual applications
of Monte Carlo are to higher dimensional examples. Generating

X1, Xn

that are independent reduces to n applications of the one dimensional case. But sampling
from

(X1,...,Xn)

where the X; are not independent can be challenging.
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10.1  Multinomial distribution

Consider the experiment in the question of the day. In this study, each test subject was
assigned to one of four phenotypes. In this case, the result is a four dimensional vector
(X1,...,X4) such that X1 + X5 + X3 + X4 = 100.

This last equation is an example of a linear constraint because it can be written in the

form
AX =b

for some constant matrix A, vector of random variables X, and constant vector b.

When we have a table of data that satisfies a linear constraint, it is called a contingency
table. In our case, the contingency table only has one row, so is fairly simple to generate
from. (Tables with more than one row will be dealt with later on in the course.)

The values of X7, ..., X, are not independent as knowing any three of them allows us to
immediately calculate the final value. However, the original test subjects are independent.
Let D1, ..., D, be iid random variables over {1,2, 3,4} where P(D; = j) = p;.

Definition 20
Say that (p1, ..., pk) is a probability vector for a random variable X if X € {1,...,k}
and P(X =) =p,; foralli e {1,...,k}.

In the Question of the Day, the probability vector for the outcomes of each trial is
(1/4,1/4,1/4,1/4). Counting the number of times each phenotype appears gives a multi-
nomial distribution.

Definition 21
Suppose that Dy, ..., D, are iid with probability vector p1,...,pg. Fori € {1,...,k},
let

n
X;=> I(D; =4).
j=1

Then say (X7, ..., Xj) has a multinomial distribution with parameters n, p, ..., pg.
Write (X1, ..., X;) ~ Multinom(n, p1, ..., pg).

The (X1, ..., X)) are not independent, but the D; are. So the simplest Monte Carlo
method for sampling from this distribution is to just use the definition as given. That is,
first generate the D; and then use this to calculate the X;.

Each X is the sum of n terms, so takes time O(n) to calculate. There are k different X,
so the total running time will be ©(nk).

This is not a great running time, but there is a way to do better. Instead of doing each
sum separately, update the appropriate X; value when each D; is drawn.

76 253



Mark Huber | Monte Carlo Methods

Multinomial Input: n,p1,...,pk
1) Let (Xy,...,X%) < (0,0,...,0)
2) Forifromiton

3) Draw D; < (p1,...,pk)

4)  Xp,+ Xp, +1

This takes time ©(n). This is considered an exponential time algorithm, since n can be
exponentially large in the size of the input of n, p1, ..., pi. Because of the decimal system,
n can be represented using ©(In(n)) symbols. That means that n itself is exponentially
large in the number of symbols used to represent 7.

To see this more clearly, consider a simpler example. Suppose 1ist (n) is a function
that give a positive integer n as input, lists out the integers 1 through n. Then 1ist (9)
returns

© 0 N O Ot = W NN

even though the length of the input was a single character 9. Similarly, the use of two
characters gives input value that could be from 10 up to 99, making the size of the output
range from 10 up through 99. In other words, for the input consisting of d digits, the output
size ranges from 109~ ! up to 10¢ — 1. That is, the size of the output is exponentially large
in the number of digits of the input.

10.2 Conditional Marginal Distributions

To develop a faster algorithm, consider how the conditional marginal distributions of the

multinomial behave. For any vector of random variables (X1, ..., X},), call the distribution
of any particular X; a marginal distribution.
With marginal distributions, to sample from (X7, ..., X},), first sample
X1

from its marginal distribution. Next sample from

[Xa|X4].
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That is, sample the next coordinate X, conditioned on the value of X; that was just
sampled. Then sample
[X3] X1, Xa),

and so on until we have the complete vector.

CondMarg

1) Draw X from its marginal distribution.

2) Forifromz2ton

3) Draw X; conditioned on the values of X1,..., X; 1
4) Return (Xi,...,X,)

Whenever you know the conditional marginal distributions, this is the algorithm to use
in sampling from vectors!

To see how this idea works with the multinomial distribution, consider the Question
of the Day example. There are 100 subjects, with a 1/4 chance of being phenotype I. So
X1 ~ Bin(100,1/4).

Suppose 21 out of these 100 are phenotype L. Then that leaves 100—21 = 79 experiments.
Each of these experiments cannot be phenotype 1. Conditioned on that fact, these each
have a 1/3 chance of being phenotype IL, III, or IV. So [X2|X; = 21] ~ Bin(100 — 79, 1/3).
Once X3 is chosen, then [X3| X2, X1] is drawn, and finally [X4| X3, X2, X;] is whatever is
left over.

In general, start with the marginal distribution of X;. The number of D; that equal 1
has a binomial distribution with parameters n and p;. Moreover, once X; is found, the
remaining (Xo, ..., X}) form a new multinomial distribution. The number of test subjects
remaining will be n — X. The probability vector is renormalized to add up to 1.

1

— Y P2 DPk)
p2+"'+pk( )

Fact 19
Suppose
(X1,...,X,) ~ Multinom(n, p1, ..., pk).

Then X; ~ Bin(n,p;1), and for alli € {2,... k},
[Xi’Xl, e ,Xifl] ~ Multinom(n = (X1 qP oo qp Xi,l),pi/si, R ,pk/si).

Here s; = p; + piv1+ -+ + pr-

This fact gives the following algorithm.
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FastMultinomial Input: n,p1,...,pk
1) Let(Xl,...,Xk)(—(0,0,...,0)
2) Draw X as binomial with parameters n and p;

)
3)
4) Draw X; as binomial with parametersn — >, _; X; and p;/(1 — >_;_; p;))
5) Return (Xi,..., Xg)

For i from 2 to k

If the binomial distribution is sampled from in O (In(n)) time (which can be accomplished
using acceptance/rejection) then this becomes a ©(k In(n)) algorithm, which is the best
possible in general.

In both these algorithms, the conditional marginal distribution of X; given X1, ..., X; 1
is known.

Example 21
Given this fast method for generating multinomials, it can be used to answer the question
of the day.

Answer First code the method for generating the multinomials.

rmultinomial <- function(n = 100, p = ¢(0.25, 0.25, 0.25,

0.25)) {

x <— rep (0, length (p))

pnorm <- 1

for (i in l:length(p)) {
x[i] <— rbinom(l, n, p[i]/pnorm)
n <-n - x[i]
pnorm <— pnorm - p[i]

}

return (x)

}
Next code a method for calculating the test statistic.

test.stat <- function (data, prob) ({
return (sum( (data - sum(data) xprob) *2))

}
Then run the Monte Carlo experiment.

p <— c(1/4, 1/4, 1/4, 1/4)

sdata <- test.stat (data = c(20, 30, 18, 32), prob = p)

r <— replicate (1076, (test.stat (rmultinomial (), p) >= 148))
mean (r)

sd (r) /sgrt (length(r))

When I ran it, I found a p-value of 0.1147 4 0.0004.
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10.3 Permutations

Definition 22
A vector (1, ...,%,) is a permutation of (1,2,...,n) ifeach z; € {1,...,n} and for
all 7 # j, x; # x;. Call the set of such vectors S,,.

For instance, (2,3,1,4), (1,2,3,4), and (4, 3,2, 1) are all permutations of (1,2, 3,4).

Consider the problem of sampling uniformly from the permutations of (1,...,n). The
same conditional marginal distribution approach used for FastMultinomial works for
this problem as well.

Fact 20
If (Xy,...,Xp) ~ Unif(S,), then

[Xi’Xl, e aXz'—l] s Unif({l, N ,TL} \ {Xl, N 7Xi—1}-

For example, if the permutation vector with four elements starts with a 2 and a 4, so it
looks like (2,4, —, —), then the third element is uniform over {1,2,3,4}\ {2,4} = {1, 3}.

By being careful, it is possible to build an algorithm that uses no extra memory and
draws exactly n — 1 uniforms using ©(nIn(n)) random bits.

Permutation Input: n

1) Let(Xy,...,Xp,) < (1,...,n)
2) Forifromiton

3) Draw [ < Unif({i,...,n})
4) Swap the values of X; and X7
5) Return (Xi,...,X,)

Since there are n! different permutations, generating uniformly over this set requires on
the order of In(n!) = nln(n) + o(nln(n)) bits.

A brief note about running times

In the above analysis of the running time, the number of bits needed to generate one
uniform from 1 up to n, O(In(n)) was included. This method of counting random bits uses
a model called a probabilistic Turing machine.

Another common way to measure running time is to count the number of uniform
random numbers over [0, 1] are needed. Each one of these can be transformed into a
uniform over {1,...,n} using the inverse transform method:

[nU| + 1.

Using this model, the running time would be considered ©(n).
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10.4 Densities and normalizing constant

Since the multinomial and permutation distributions are over finite state spaces, their
densities are with respect to counting measure. For multinomials,

n x x
f(Xl,...,Xk)(xlv ... ,xk) = (xl Ly - xn)pll .. .pkkﬂ((l'l, . ,.Z'n) € Q),

where () is the set of nonnegative integers vectors whose components add to n. Here

n B n!
1T - Ty xilwo! - xy,!

This is a completely normalized distribution.
Conditioning on the value of X1, the conditional density formula gives:

f(Xar X)) Xi=a1 (T2, -+, Tn)
n 1 T
x cep Rl (2, .., ) € Q
(331 2y - $n>p1 Py (1 » Tn) )

o nlp! ( n—
ziln —x)! \xo -+ zy

>p§2 .. pikﬂ((ﬂjQ, ceey mn) S Q)

The n!pi* /(z1!(n — z1)!) part is constant when X = z; is fixed, and the rest looks like
another multinomial distribution. This is the basis of Fact 19.
For permutations

foxy,xy(@1, o) = (1/2)I((21, - 20) € Sn))

For permutations, Z = #(S,,) = n!. Again, the normalizing constant is known in the
sense that it can be easily computed. In general, the conditional marginal distribution can
be used efficiently on any problem where the normalizing constant is efficient to compute.

Problems

10.1: Suppose the random variables (X, X, X3) are multinomial with n = 10 and
(p1,p2,p3) = (0.2,0.5,0.3). (So (X1, X2, X3) ~ Multinom(10,0.2,0.5,0.3).)

a) What is the distribution of X;?
b) What is the distribution of (X2, X3) given that X; = 4?

10.2: Suppose (Ry, Ry, R3, R4) are multinomial with n = 20 and (p1,p2,p3,p4) =
(0.1,0.1,0.1,0.7).

a) What is the distribution of R;?
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10.3:

10.4:

10.5:

10.6:

b) What is the distribution of (R2, R3, R4) given that Ry = 1)?

Suppose that (X7, X5, X3) are uniform over the permutations of the numbers 1, 2,
and 3.

a) What is the distribution of X;?
b) Give X; = 2, what is the distribution of (X2, X3)?

Suppose (Ry, ..., Rs2)

« Using factorial notation, how many different values are there for (R1, ... R52).

o What is the distribution of R;?

Suppose U; ~ Unif([0,1]) and [U;|Uy,...,Ui—1] ~ Unif([0,U;—1]. Write pseu-
docode that takes n as input and returns a random draw from (Uy, ..., Uy,).

Write pseudocode that combines the conditional marginal method with acceptance
rejection in order to generate a permutation uniformly on 7 > 4 elements such that
the number in the first position is larger than the number in the fourth position.
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Sampling uniformly a direction in space

Question of the day

How can one draw a direction uniformly from n dimensional space?

Summary

« A random vector is uniform over directions if its distribution is invariant under
any constant rotation.

+ Such a vector can be generated by drawing uniformly over a ball of any fixed radius
in n dimensions.

+ Another way to generate this type of vector is by taking iid normal random variables.

+ Usually such random vectors are normalized by dividing by their Euclidean length.

There are many applications where the need is to pick a random direction in R™. For
instance,

« Optimization routines occasionally pick a random direction to search in.
« Random walks in high dimensions start moving in a random direction.

11.1  Uniform direction

This is easy to do in one dimension, either move right or move left.
D ~ Unif({—1,1}).

In higher dimensions, things get a bit trickier. First, it is necessary to say what is meant
by uniform over direction. One way to describe it is to say that a vector is uniform over
direction if rotating it by any fixed value does not change the distribution.
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Definition 23
Say that X € R" has a distribution that is uniform over directions in R” if R(X) ~ X
for all fixed rotations R.

For instance, if you take a vector in R3 that is uniform over directions, and rotate it 90
degrees around the y-axis, it will still be uniform. This type of definition, where uniform is
defined as being invariant under a type of transformation, is also called Haar measure.

There are many such distributions that are invariant under rotation. One way to generate
from such directions is to draw uniformly from inside a ball of a fixed radius.

Fact 21
Let B, = {(21,...,7p) : 2% +--- 22 < 1}. Suppose

(X1,...,Xn) ~ Unif(By).

Then (X1, ..., X,) is uniform over directions in R".

It is common to take a uniform direction and normalize it by dividing by its Euclidean
length to make it of length 1.

Fact 22
If (X1,...,X,) is uniform over directions in R", then so is
(X1,...,X5)
(X1, ..., Xn)ll

Two dimensions

In two dimensions, a point drawn from inside the unit circle and then normalized to have
length 1 will lie on the surface of the circle.

05

> 00

-05
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Because this point is uniform under rotation, the angle of the point on the edge of the
unit circle will also be uniform from 0 up to 7. (Here 7 is the full circle constant, and is
T = 27 where 7 is the half circle constant.) This gives the following fact.

Fact 23
If © ~ Unif([0, 7)), then
(X,Y) = (cos(©),sin(©))

is a uniform direction in 2 dimensional space.

The corresponding algorithm then is

2D Circle

1) Draw Up < Unif([0, 1])
2) Return (cos(UyT),sin(Ui7))

The surface of the unit circle is an example of a manifold of one dimension. A manifold is
a curve or surface or hypersurface in space that looks flat when magnified about a point on
the manifold. Because the manifold is one dimensional, this algorithm is the best possible.
One uniform gives one draw from a one dimensional manifold.

Three dimensions

Three dimensions is slightly trickier than two dimensions, but there is a very useful fact
about the surface of a sphere that makes sampling using the conditional distribution method
possible.

Fact 24
For (X7, X2, X3) uniform over the surface of a 3-sphere, for each i, X; ~ Unif([—1, 1]).

The algorithm draws X3 first, which restricts the draw to the circle on the surface of the
hypersphere where the z value equals X3. The points (X7, X2) are then drawn uniformly
from this circle.

3D surface of sphere
1) Draw Uy, Uy < Unif([0, 1])

2) Let X3+ 2U;—1, R« \/1—X2,®<—TU2
3) Return (Rcos(0O), Rsin(0), X3)

Again this is as good as can be hoped for: the algorithm uses 2 uniforms to get a draw
that was uniform over a two dimensional manifold.
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11.2  Higher dimensions

While the problem is easy in 3 or fewer dimensions, in 4 or higher dimensions things get
stickier. Instead of using special properties, at this point it is best to jump to a more general
idea.

AR could be used.

4D surface of hypersphere

1) Repeat

2) Draw (Uy, Uz, U3, Uy) < Unif([—1,1]%)
3) UntilU}+UZ+U34+U;<1

4) Return (Ul,UQ,Ug,U4)/|‘(U1,U2,U3,U4)||

This is fine in four dimensions where the chance of acceptance is about 30.84%, but the
chance of acceptance goes down exponentially fast in the dimension. So a better approach
is needed for high dimensions.

11.3 Normal random variables

The key to a better approach is to use standard normal random variables.
Consider 7y, ..., Z, iid standard normal random variables. Then their joint density is
just the product of their individual densities, so

f21,..2, (215, 2 HT Zexp(—27/2)
:7'_”/2exp< (1/2) Zz)
=1

=72 exp <—(1/2)

1 z)IP)

That means that the density does not depend on the z; values except through their Lo
norm, their Euclidean distance from the origin. That gives the rotational symmetry, or
uniformity over directions, that is the goal.

Fact 25
Let Z1, ..., Z, be iid standard normal random variables. Then

1

(21, ., Zn)
(2155 Za)

is uniform over directions in R"™.

Using this method, a uniform direction on an n—1 dimensional manifold can be generated
using only n draws from iid standard normals. So not much is lost!
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Example 22
Use the normal method to estimate what proportion of the surface area of the Earth is
within 10 degrees latitude of the equator.

Answer. We draw uniformly from the surface of a sphere, and then record how
many of those points are within 10 degrees latitude of the equator. The first few lines
draw uniformly from the sphere, and w is the indicator function (using lots of basic
trigonometry) that our point lies within 10 degrees of the equator.

mc <— function () {
z <— rnorm(3) # will need three normals for each draw
n <— sqgrt (sum(z"2))
norm_z <— z / n
w <— abs(norm_z[3] / sgrt(sum(norm_z[1:2]"2))) <
tan(10 * pi / 180)
return (w)

Box-Mueller

This idea can be used in reverse to draw normal random variables. This is called the
Box-Mueller method for drawing normal random variables. To do this, it is necessary to
understand the distribution of the distance the point (Z1, Z3) is from the origin when Z;
and Z are iid standard normals.

Fact 26

Let (R, ©) be the polar coordinate version of the rectangular coordinate point (Z1, Z2).
For Z; and Z are iid standard normals, © ~ Unif([0, 7)) and R ~ rexp(—r2/2)I(r >
0).

Proof. Remember that when converting from rectangular coordinates to polar, dz dy =
r dr df. The densities can be written with factors I(¢ € [0,7)) and I(r > 0) because
angles are always given in [0, 7) and distance from the origin as a positive number. Hence,

f71,2, (21, 22) dz1 dzo = 7P exp(— (2] + 23)/2)r dr df
= [r7'1(0 € [0,7]) db)] [r exp(—7?/2) dr].

Note 7711(# € [0,7]) is the density of a uniform over [0, 7] and 7 exp(—r?2/2) is the
Rayleigh density. O

To generate samples from the Rayleigh density, first generate an exponential of rate 1/2
using 7' = —21In(U) and then take the square root.
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Fact 27
Let T ~ Exp(1/2). Then /T has the Rayleigh distribution with density

rexp(—r2/2)I(r > 0).

Proof. LetT ~ Exp(1/2) and @ > 0. Then

P(VT < a) = P(T < d?)

2

— [ esw(-1/2)s) ds
0
=1 —exp(—a?/2).
Differentiating then gives the desired result. O

This gives rise to the Box-Mueller method for generating normal random variables.

Box-Mueller

1) Draw Uy, Uy < Unif([0, 1])
2) O+« 71U, R+ /—2In(Us)
3) Return (Rcos(0), Rsin(0))

This is the best possible: two draws of uniforms over [0, 1] will give two draws from
standard normal random variables.

11.4 Ratio of Uniforms

Older computers did not have easy access to functions like sine and cosine. Even when they
did, these functions could take a long time to evaluate. To solve this problem, a method
was developed called ratio of uniforms which used our 2D acceptance rejection in a circle
in order to draw uniformly from [—7 /2, 7/2]. Consider the following picture.

Use acceptance rejection with draws from the rectangle to get a draw inside the circle.
This requires on average 2/[(1/2)(7/2)] < 1.274 draws to get an accepted value (X7, X»).
From trigonometry Xo/X; = tan(©), so has a standard Cauchy distribution. All without
using trigonometric functions!
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Ratio-of-Uniforms-Cauchy

1) Repeat

2) Draw (Uy, Us) iid Unif([0, 1])
3) Until U2 + (2U; — 1)2 < 1

4) Return (Uz/Uy)

Definition 24
A method is of type ratio-of-uniforms if its output is Uy /U; where (U, Us) is drawn
uniformly over a set.

Kinderman and Monahan introduced this method in 1977, calling it the ratio-of-uniforms
method. Because the Cauchy has the rise and fall behavior of so many important distribu-
tions (such as Binomial and Gamma) it is useful in sampling from them. Often the constant
time algorithms for sampling from distributions such as Binomial have a ratio-of-uniforms
form.

Problems
11.1: Let Vy,..., V5 be chosen uniformly from the surface of a 5 dimensional sphere. Using
10% samples, estimate
E[[V]] Z Vil

and report your estimate in a £ b form.

11.2: Using 109 draws, estimate
P<W1+-"+W6 20.5>
where (W1, ..., Ws) is uniformly drawn from the surface of a six dimensional sphere.

11.3: Use the normal method to estimate what proportion of the Earth’s surface is between
40 and 50 degrees latitude north of the equator. Take 10 samples and estimate your
answer in the form a £ b.

11.4: Use the normal method to estimate what proportion of the Earth’s surface is between
the latitudes of 10 degrees north and 10 degrees south of the equator. Take 10°
samples and estimate your answer in the form a £ b.

11.5: Write code to draw (X, Y") uniformly from the unit circle (the boundary of a ball of
radius 1) in R?. Using 10° draws, estimate P(Y" > 0.7), reporting your answer as
a=xb
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11.6: Write code to draw (X,Y") uniformly from the unit circle (the boundary of a ball
of radius 1) in R?. Using 10° draws, estimate P(X + 0.3Y > 0.4), reporting your
answer as a £ b.

11.7: Consider (X, Y") uniform over the unit disc Unif({(z,y) : 2% + y? < 1}). Consider
the distance from the origin R = v/ X2 + Y2

a) Find, using the properties of uniforms, P(R < 0.3).
b) Find for r € [0,1], P(R < 7).
¢) Write code to sample from R using the inverse transform method.

d) Draw (X,Y") uniformly from the unit disc by first drawing R using the last
part, and 6 uniformly from o to 7, then converting from polar coordinates to
Cartesian coordinates.

e) Using 10% draws, estimate P(Y > 0.5), reporting your answer as a = b.

11.8: For (X, Y, Z) uniform from the volume inside the unit sphere {(x,y, ) : 2% + y* +
22 < 1}, what is the density of R = vV X2 + Y2 + Z2.
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Chapter 12
High dimensional models with unknown
normalizing constant

Question of the day
A model of soil quality lists each plot as either good (label with a 1) or bad (label with a o)
0 1 1 1
1 1 0 1
0 1 0 1
1 1 1 0

For a vector z, let h(x) be the number of adjacent plots (left-right or up-down) with the
same label. The probabilistic model uses a parameter 8 > 0, and sets

_ exp(Bh(z))
Z(p)

Here Z(/3) is the normalizing constant for the density, which is a function of the parameter

B

P(X =z)

For 5 = 1, in the 4 by 4 lattice, estimate the probability that h(X) < 16.

Summary

The Acceptance/Rejection method works just as well in high dimensions as in one
dimension. It can be used to get samples from distributions where the normalizing constant
is unknown. Unfortunately, the run time of basic AR tends to increase exponentially with
the dimension for simple examples.
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Definition 25
The state space (often written 2) is the set of all possible outcomes in a model.

In the question of the day, the graph structure is that of a 4 by 4 lattice. The lattice points
can be numbered from 1 to 16:

4 8 12 16

3 7 11 15

2 6 10 14

1 5 9 13

Each of these sixteen values can be either 0 or 1. The mathematical notation for the set of
n-tuples of length 16 whose components are either 0 or 1 is {0, 1}16. In other words, when
you raise a set to an integer power n, the result is the set of n tuples whose components
live in the set.

Definition 26
Say that v € A" if v is an n-tuple where each component is an element of A. If A C R,
then we say v is an n dimensional vector.

Counting measure is an example of what is called a product measure. One consequence of
this is that the size of a set that is raised to a power is the size of the set raised to that power.
That means that for a state space like {0, 1}1¢, #({0, 1}16) = #({0, 1})16 = 216 = 65536.

This fact can be written as follows.

Fact 28
For A a finite set, #(A") = #(A)™.

Given the ability to generate from one dimension, and if the goal is to generate from
XlaXQa' : 'aXn

that are iid (independent, identically distributed) random variables, then just generate the
points X; one at a time.
In most models where Monte Carlo methods are used, the goal is to generate a high

dimensional distribution
(X1,...,X5)

where the X; are not independent.
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Such models can be described by an unnormalized joint density.

f(X1 ..... Xn)(xla"'vl‘n)

with respect to measure p. Being an unnormalized joint density means that for A an
n-dimensional subset of R",

Serramyen Fxr o) (@15 @) dp

P((X1,...,X,) € A) =

For many of these models, it is prohibitively difficult to calculate the denominator. So
what do we do?

12.1 AR for the Ising model
The distribution of the question of the day has a name: it is called the Ising model.

Definition 27
For a graph G = (V, E), say that X € {0,1}" is distributed according to the Ising
model with parameter /5 (write X ~ Ising(G, /3)) if X has unnormalized density

9x (x) = exp(Bh(z))

where h(z) = Z{i,j}eE I(z(2) = ()

The simplest approach is to use acceptance rejection. In the question of the day, the
maximum that h(z) can take on is 24. So for § > 0,

h(z) <24
Bh(x) < 2483
exp(B(h(z)) < exp(248).

Hence for unnormalized target density gx (z) = exp(8h(x)), we can use unnormalized
proposal density gy (z) = exp(2403). This makes

exp(8h(z))
exp(243)

The density exp(24/3) is constant over the state space {0,1}!6. That makes ¥ ~
Unif({0, 1}1°). The nice thing about sampling uniformly over a product state space is that
you can sample independently and uniformly over each piece.

— exp(B(h(x) — 24)).

Fact 29
The variables {Ui,...,U,} are independent with U; ~ Unif(A4;) if and only if
(Ul, 500 g Un) ~ Unif(Al X oo X An)
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That means to sample Y ~ Unif({0, 1}19), just draw Y7, . . ., Y36 independently uniform
over {0, 1}. If the proposed state Y happens to be all 0’s, or all 1’s, then 2(X') = 24, and the
probability of accepting is 1. That means there is at least a 2/2'¢ probability of accepting,
which means that the expected number of draws before accepting is at most

1

— 9l5 _
77 = 217 = 32768,

This is not a problem for a fast computer, but this was also a tiny 4 by 4 lattice. Since
the chance of acceptance goes down exponentially in the square of the side length of the
lattice, it goes down quickly indeed. A 5 by 5 lattice has 25 nodes, and so the bound given
on the number of times a draw needs to be made is 22° /2 = 16 777 216 or more than 16
million!

Returning to the 4 by 4 lattice, in pseudocode, this AR algorithm looks like the following

AR for Ising Input:3,G = (V,E)

1) Repeat

2) Draw Y71, ..., Yy iid Unif({0,1}), U < Unif({0,1})
3) Let h <+ Z{i,j}eE LY (i) =Y(3))

4) UntilU < exp(—fF(24 —h(Y)))

5) ReturnY

Implementing in R

To implement this method in R, start with the rep function. Here rep stands for repeat.
This function repeats a value to create a vector of the desired length. For instance,

rep (0, 16)
has output
[1] 00 0O0OO0O0O0OO0COO0OOO0OODOOOO

Next, the vector needs to be put that into a matrix. Fortunately, R has a matrix data
type. We can place this into a matrix that is 4 by 4 by setting the parameter nrow to 4. This
tells us there are 4 rows, and since there are 16 entries in the matrix, gives 4 columns for
free without specifying anything. The result is a 4 by 4 matrix. At this point, the matrix in
R looks like this:

[,4

o O O o —
o O O o —

Now can we calculate h(x) for a matrix in this form? Well, first we want to add up the
vertical cases. That is, we want to count the times that the entries in rows 1 through 3
match the entries in rows 2 through 4.
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Next, count the times that the entries in columns 1 through 3 match the entries in
columns 2 through 4. The nrow function gives the number of rows in a matrix, while ncol
gives the number of columns. The following code calculates h for a matrix x.

h <- function (x) {
h <- sum(x[1l: (nrow(x)-1), ] == x[2:nrow(x), 1)
h <-— h + sum(x[, 1l:(ncol(x)-1)] == x[, 2:ncol(x)])
return (h)

Given the function to calculate h(x), it can be determined if a particular proposed state
should be accepted or rejected. For an a by b lattice, each of the a rows has b — 1 horizontal
edges, and each of the b columns has a — 1 vertical edges. This makes the total number of
edges in such a lattice

a(b—1)+bla—1)=2ab—a—b.
That means that the AR algorithm will look something like this.

ar.ising <- function (beta, k) {
repeat
x <- matrix(as.integer (runif(k[1l] % k[2]) > 0.5),
nrow = k[1])
u <— runif (1)

if (u < exp(-beta » (2 « k[1] * k[2] — k[1] - k[2] - h(x)))

return (x)

This code can be modified to find out how many steps we took to get a single draw.

ar.ising.report <- function(beta, k) {
t <=0
repeat {
t <—-t + 1
x <- matrix(as.integer (runif(k[1l] =« k[2]) > 0.5),
nrow = k[1])
u <— runif (1)
if (u < exp(-beta =
(2 = k[1] = k[2] = k[1] - k[2] - h(x))))
return (t)
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To answer the Question of the Day, the code could be used as follows:

results <- replicate (1072, h(ar.ising(l, c(4,4))) <= 16)
mean (results)
sd(results) /sqgrt (length (results))

which returned 0.10 + 0.03 when I ran it.
Problems
12.1: Consider a 3 by 3 lattice.

a) How many nodes are there in the lattice?

b) How many edges are there in the lattice?
12.2: Consider a 5 by 4 lattice.

a) How many nodes are there in the lattice?

b) How many edges are there in the lattice?

12.3: Using 200 exact draws from the Ising model on a 3 by 3 lattice with 8 = 0.8, find
the average of the h function value. Write your answer as a £ b.

12.4: Using 200 exact draws from the Ising model on a 3 by 3 lattice with 8 = 1.0, find
the average of the h function value. Write your answer as a + b.

12.5: Using 200 draws from the Ising model on a 3 by 3 lattice with 8 = 1.2, find the
average of the h function value. Write your answer as a =+ b.

12.6: Using 200 exact draws from the Ising model on a 3 by 3 lattice with 3 = 0, find the
average of the h function value. Write your answer as a =+ b.

12.7: For state space [0, 1]'%, consider X = (X3, ..., X10) with unnormalized density

gx(T1,22,...,210) = x1 + 222 + - - - + 10z10.

In R, this density can be computed using:

g <— function(x) {
return(sum(1:10 * X))

}

Using uniform draws over the state space in AR, write a function in R to draw from
this distribution.
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12.8: For state space [0, 2]3, consider X = (X1, X2, X3) with unnormalized density

hx (21,22, 13) = T120231((21, 29, 23) € [0,2]%).

Using uniform draws over the state space in AR, write a function in R to draw from
this distribution.
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Chapter 13

Introduction to Markov chains

Question of the Day

Why does randomly swapping pairs of cards in a deck lead to an approximately uniform
permutation of the cards?

Summary

« A Markov chain with update function ¢ is a stochastic process {X;} where
the next state is a function of the current state and some randomness. That is, for
Uo, Ui, ... a stream of random variables, X; 1 = ¢(X;, Uy).

« A distribution 7 is stationary for the Markov chain if X; ~ 7 implies ¢( Xy, Uy) ~ 7.

« A distribution v is limiting for the Markov chain if for all x, the distribution of X}
given Xo = ¢ converges to v.

« A Markov chain is connected if for any two states ¢ and j of the chain, there exists
a time ¢ such that P(X; = j | Xo =) > 0.

+ A connected Markov chain is aperiodic if for any two states ¢ and j of the chain,
there exists a time ¢ such that for all ' > ¢, P(Xy = j | Xo = 1) > 0.

« The Ergodic Theorem (aka the Fundamental Theorem of Markov chains) says that
if a Markov chain is both aperiodic and connected, then it has a unique stationary
distribution that is also a limiting distribution.

13.1  What is a Markov chain?

Using acceptance rejection for the Ising model and other similar distributions works well
when the number of dimensions n is low, but usually takes time that grows exponentially
inn.

In order to do better, the idea of Markov chain Monte Carlo was created during World
War II at about the same time that Monte Carlo methods in general started being used.
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The idea is to take advantage of a special type of stochastic process called a Markov
chain. These had been invented by Markov decades earlier to assist in cracking codes, now
they would be used in the opposite direction to create random objects.

The idea is that a Markov chain starts at state X. Then the next state is found by first
drawing some randomness Uy, and then setting

X1 = ¢(X0> U)7

where ¢ is a deterministic function called the update function. If this process is repeated,
then the result is a Markov chain.

Definition 28
Given random variable X € (), an iid stream Uy, Uy, . . . of random choices in {2z and
update function ¢ : Q x Qp — Q, fort € {1,2,...} the stream formed by

Xt = ¢(X4—1,U—1)

is a Markov chain with update function ¢. The set €2 is called that state space of the
chain.

Example 23

Suppose X = 0 and Dy, D1, D, ... are iid Unif({—1,1}). Then for ¢(z,d) = = + d,
this Markov chain either moves the state 1 to the right or to the left at each step. It is
called symmetric random walk on the integers.

A deck of cards can be thought of as encoding a permutation.

Notation 3
Let S, be the set of permutations of n elements.

The S stands for symmetric group.

Example 24
For a permutation z € S,,, suppose ¢y (z, (¢, 7)) is the permutation that swaps the values
in components ¢ and j. So

2(f) k=i
Pu(z, (i,5))(k) = ¢ =(i) k=
x(k) k#i,k#]

Then if Uy = (I, J;) ~ Unif({1,...,n}?), then update function ¢y, gives the transposi-
tion chain on permutations.
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For instance, ¢((5,3,1,2,4),3,5) = (5,3,4,2,1). In terms of a deck of cards, the
transposition chain picks two cards at random (so there is a (1/7)? chance of picking the
same card twice) and swaps them in the deck.

If one continues transposing random pairs of cards, after a while, the deck will become
mixed up. More precisely, the state X; will have a distribution that is close to uniform.

On the other hand, if a deck of cards is already mixed up, that is, already in a uniformly
chosen permutation, then randomly transposing two cards leaves the distribution (but
not the state) unchanged: it is still uniform over S,,. This type of distribution is called
stationary.

Definition 29
A distribution 7 is stationary for a Markov chain if

XtN7T:>Xt+1N7T.

A step of a Markov chain can be thought of in two ways.

1. A step takes a state X;_; and changes the state to Xj.

2. If X;_1 has distribution 7;_1, then after one step of the Markov chain, X; has
distribution Mm;_1 = 7.

In other words, a Markov chain step is an operator on probability distributions that
transforms the distribution to a new distribution.

Definition 30
For a Markov chain step M, say that Mm;_1 = m; if

[Xt | Xi1~ 7Tt—1] ~ Tt.

Then a stationary distribution is a distribution 7 such that M7 = 7.

Example 25
Let Xy ~ Unif({—1,0,1}), D; ~ Unif({—1,1}), and the Markov chain step is X;11 =
X¢ + Dy. Then the distribution of X; 1 has density:

156 = —2) + 2106 = —1) + 216 = 0) + 21(i = 1) + ~1( = 2).

Fxina (i) =5 6 3 6 6

There is an interesting phenomenon in mathematics that if you have a fixed point like a
stationary distribution with respect to an operator, and you apply this operator over and
over again, you often end up converging to the fixed point.
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Example 26
A numerical example of this phenomenon is the mapping

=+ (2-2)/(22).
If you plug v/2 into this mapping, you get v/2 + (2 — 2)/(2v/2) = v/2, so this mapping

has /2 as a fixed point. Now suppose you start at 2 and apply this mapping over and
over. You get

G z+ (2 — z2)/(2x)
2 1.5
1.5 1.416666

1.416666 1.414215

This matches the v/2 to the first 6 digits already! Repeating this procedure gives a
more and more accurate result.

In the same way, when you take many steps in a Markov chain, the resulting distribution
will converge to the stationary distribution under a few simple conditions. In order to
make this precise, it is necessary to define a notion of convergence of distributions. First
define a distance between distributions. For a distribution 7, call a set A measurable if
m(A) gives the probability that X ~ 7 falls in A.

Definition 31
The total variation distance between probability distributions 7; and 9 is

diStTv(ﬂ'l,’/Tg) = sup |7T1(A) = 7T2(A)’

measurable A

Here sup standard for the supremum, which is the least upper bound for a set of values.
Because 71 (A) and my(A) are probabilities in [0, 1], there difference is in [—1, 1], and
their absolute value is in [0, 1]. Therefore, the total variation distance is between o (when
the distributions are effectively the same) and 1 (when the two distributions put all their
respective probability on disjoint sets.)

Definition 32
A sequence of probability distributions {7;} converges to 7 (write 7, — ) if

tll}f& diStTv(ﬂ't, 7T) =0.

Then 7 is a limiting distribution of the Markov chain if no matter where the chain starts,
as time goes on the distribution of the current state is approaching 7.
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Definition 33
A Markov chain {X;} over state space 2 has limiting distribution r if

(Vzo € Q)([X¢ | Xo = o] = ).

In order for a finite state Markov chain to have the stationary distribution (fixed point)
equal to the limiting distribution, the chain must have two properties.

1. It must be possible to get from any state ¢ to any other state j by taking steps in the
Markov chain.

2. It should not be possible to partition the state space into regions Ay, ..., Ax where
k > 2 such that foralli € {1,...,k — 1}, P(X; € Aip1 | Xy € 4;)) = 1 and
]P)(Xt € A ’ X; € Ak) =1

These two properties are formally defined as follows.

Definition 34
A Markov chain over a finite state space {2 is connected (aka irreducible) if

(Vi,j € QE)P(X, = | Xo = 1) > 0).

Definition 35
A Markov chain over a finite state space (2 is aperiodic if

(Vi,j € Q3t) (V' > t)(P(Xy = j | Xo =) > 0).

The big theorem about Markov chains is that a connected, aperiodic chain has a limiting
distribution equal to a unique stationary distribution.

Theorem 7
Ergodic Theorem for finite state Markov chains

If a finite state Markov chain is connected and aperiodic, then it has a unique stationary
distribution that is also the limiting distribution for the chain.

The proof can be found in Stochastic Processes,atht tps://d71b37a6-£420-4d99-8d4
filesusr.com/ugd/c2b9b6_98b69%9ae5caa54f68acaabf198918e918.pdf.

The easiest way to ensure that a connected chain is aperiodic is to make sure there is a
state i such that P(X; =i | X;—1 =) > 0.

Fact 30
Suppose {X;} is a connected Markov chain with state i such that P(X; =i | Xy =
i) > 0. Then the chain is also aperiodic.
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Proof. Let z,y € Q. Then there is a time r such that P(X,, =i | Xo = x) > 0 and s such
that P(Xs =y | Xo=1) > 0.Lett =7+ s,and ¢’ > t. Then

P(Xy =y | Xo==) 2P(X, =i | Xo =2)P(Xp_s =i | X, = ))P(Xyp =y | Xpy_s = i)

Since all three factors on the right are positive, the left hand side is also positive.

O

Finally, it is possible to find the limiting distribution of the transposition chain on
permutations.

Fact 31
The transposition chain for permutations has the uniform distribution as its limiting
distribution.

Proof. To use the Ergodic Theorem, the chain must be shown to be connected, aperiodic,
and have the uniform distribution as the stationary distribution.

« The fact that the chain is connected follows from any comparison sorting algorithm
that only switches two items as a time. (For instance, BubbleSort does the trick.)

. Since there is a 1/n? > 0 chance that I = J and the state remains the same, it is
also aperiodic.

« Suppose X;_1 ~ Unif(S,,). Let x € S,,. Then

P(X;=2)=>» P(X;1=y)PXy=x| X1 =y)

1
= EZP(Xt —z| X1 =v).
Yy

Suppose that y differs from x by a single transposition that swaps the items at positions
a and b. There are n choose 2 such states y for every =z.

If the current state is ¥, the chance of picking the transposition that swap to x is 2/n?,
since either (a,b) = (I, J) or (a,b) = (J,I).

The last case to consider is when y = x. In that case

1
P(Xi=z| X =2)=PI=J)= .

Summing up gives

1 1[/n\2 1 1 [2n(n+1) 1 1
— N PXy =2 | X1 =y) = — ST N e Y B
mzy: (Xe=2|Xi1 =y) l [<2>n2+n} n![ on2 —i—n} o
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13.2 Implementing the transposition chain in R

To implement this update function in R, simply supply the chain with the current state and
the tuple of positions to be swapped. The rev command reverses the order of a vector.

tr_chain <- function(x, swap) {
w <- X
w[swap] <- x[rev(swap) ]
return (w)

Check that this is working:

tr_chain(c(5, 1, 4, 3, 2), c(2, 4))

## [1] 53 41 2

Starting from any permutation, taking a number of random swaps will leave the state
close to stationarity.

X <- c¢(1, 2, 3, 4, 5)
n <- length (x)
for (i in 1:1000)
X <— tr_chain(x, floor (runif(2) * n) + 1)
print (x)

## [1] 51 4 3 2

This simple chain on permutations does not accomplish anything that cannot be done
with simpler methods, but more sophisticated Markov chains will allow approximate
sampling from distributions where no other way exists.

Problems

13.1: Consider the update function on state space {0, 1,...,n — 1} so that either adds 1 or
subtracts 1 mod n with probability 0.3, and with probability o.4 stays where it is. Let

f(u) =I(u>0.7) — I(u < 0.3),

and
¢(z,u) =z + f(u) = nl(z + f(u) =n) +nl(z + f(u) = -1).
Suppose n = 10.

a) Write an R function that takes a state x, standard uniform u, and n and returns
¢(z,u) over {0,...,n —1}.
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b) Given Xy = 0, find X 1000 times, and report an estimate for E[X o] as
azxb.

13.2: For the chain of the previous problem with state space 2 = {0, 1,...,9},

a) If X ~ Unif(Q2), find

b) More generally, show that for all i € ),
P(X; =) =1/10.
c) What does that tell us about the stationary distribution of the chain?

13.3: Suppose {X;} is a Markov chain has a stationary distribution over {0, 1,2}'° that
is uniform over states with 21‘121 X; < 7. Steps in the chain connect any states,
and the chain is aperiodic. What can be said about the limiting distribution of the
Markov chain, and how do you know this?

13.4: A Markov chain on three states {a, b, c} is connected and aperiodic, and has a
stationary distribution with 7(a) = 7 (b) = 0.2,7(c) = 0.6. What can you say
about the distribution of lim;_,, X; and why?

105 253



Chapter 14

Gibbs samplers

Question of the Day

Design a Markov chain whose state space is
Q={(z,y):0<2<1,0<y<zl(z<0.5)+ (1 —2)(z>05)}.
This region looks like this:

0.51
0.4 1
0.3 1
0.2 1

0.1

0.0 1

0.00 0.25 0.50 0.75 1.00

Summary

+ Gibbs sampling is a protocol for building a Markov chain with a particular stationary
distribution 7. It works by selecting one or more dimensions of the current state,
erasing their values, and then filling the missing values randomly using 7 conditioned
on the remaining values of the state.

Earlier AR was used to sample from problems like the Question of the Day, now a Markov
chain will be constructed.
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14.1  The idea of the Gibbs sampler

Let f(z) = zl(z < 0.5)4+(1—x)I(z > 0.5). Then a state of the chain has two components,
1 and 2. Let (X7, X2) be the current state of the chain. Then note that given X7, the
distribution of X5 is uniform from 0 up to f(X;). Given Xy, the distribution of X7 is
slightly trickier, but can quickly be solved to get

[Xl | Xg] ~ Ul’lif([XQ, 1-— XQ]) .

So the Gibbs sampler works as follows. Suppose the current state is (X7, X2). First,
draw X7 conditioned on X5, and then draw X5 conditioned on Xj.

Algorithm 1
QOtD_GibbS (Xl, X2)

1. Draw X uniformly from [X2,1 — X5].

2. Draw X3 uniformly from [0, f(X1)].

For instance, suppose the current state is (0.4213,0.1544) (kept to four sig figs for
convenience.) Then first draw a new value for (0.4213) that is uniformly from 0.1544 up
to 0.8456. Pictorially, this means drawing a new value for X that is uniform on the red
dotted line.

0.51
0.4 1
0.3 1
0.2 1
0.1+

0.01

0.00 0.25 0.50 0.75 1.00
X

Perhaps the new value chosen is 0.2513. Then the value of y is chosen to lie between 0
and 0.2513. (See picture below.)
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0.51

0.4 1

0.3 1

0.2 1

0.1+

0.01

0.00 0.25 0.50 0.75 1.00
X

Suppose value 0.0550 was chosen on the green line. This one step of the Markov chain
is complete, and the new state is (0.2513, 0.0550).
0.5 1
0.4 1
0.3 1

0.2 1

0.1

0.01

0.00 0.25 0.50 0.75 1.00
X

Statisticians find it useful to have a notation for removing one component from an
n-tuple. The notation x_; means z, ..., x;—; together with x;41,...,x,. Thatis, x_; is
the vector z1, . .., x, with the ith component removed. For example if z = (3,5, 1, 2, 2),
thenz_o = (3,1,2,2).

Note: this notation works in R as well!
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By using this notation, the Gibbs sampler can be described as follows.

Algorithm 2
Deterministic_scan_Gibbs_sampler (z1,...,z,)

1: For i from 1 to n do
2: Replace x; with a draw from 7 conditioned on z_;.

3: Return =

Note that this entire algorithm is one step in the Markov chain. It is called deterministic
scan because all the components are run through in order from 1 through n.

This can sometimes lead to problems if the order of the dimensions matters. A random
permutation scan permutes the components first uniformly at random before changing
them.

Algorithm 3
Random_permutation_scan_Gibbs_sampler (z1,...,x,)

1: Let s be a uniform permutation on n elements
2: For i from 1 to n do
35 Replace z ;) with a draw from 7 conditioned on z_ ;).

4: Return x

You do not want to use this method when 7 is small, as there will be a 1/n chance of
using the same component at the end of one step as at the beginning of the next step.
A third alternative is to just randomly pick a component to change.

Algorithm 4
Random_scan_Gibbs_Sampler(z1, ..., z,)

1: Choose ¢ uniformly from 1 to n
2: Replace x; with a draw from 7 conditioned on z_;.

3: Return x

This has a 1/n chance of picking the same component to update twice in a row. Not a
big deal when n is large, but is never used for this reason when n = 2.

One step in any version of the Gibbs sampler is stationary with respect to 7.

To work for all three types of Gibbs sampler, it is necessary to show that updating one
component is a stationary step. Let X = (X1,...,X,,). Then marginally, X_; comes
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from 7 restricted to components {1,...,7 — 1,7+ 1,...,n}. Then by definition, drawing
[X; | X_;] from 7 restricted to components {1,...,i—1,i+1,...,n} is a draw from 7.

14.2  The Ergodic Theorem for continuous state spaces

With a continuous (or infinite) state space, it is necessary to have slightly stronger condi-
tions for the limiting distribution to equal to the stationary distribution.

Definition 36

For a distribution ¢ over the state space, a chain is ¢-connected (aka ¢-irreducible) if
for every measurable set A with ¢(A) > 0, and every state z, there is a positive integer
n such that the probability of moving from x to A in n moves is positive.

The equivalent of aperiodicity is similar.

Definition 37

For a ¢-connected chain, the chain is ¢p-aperiodic if for every measurable set A with
»(A) > 0, and every state x, there is a positive integer N such that for all n > N, the
probability of moving from x to A in n moves is positive.

Then the Ergodic Theorem is slightly weaker than the finite state case in that there is
not a guarantee of a stationary distribution, but if such a stationary distribution 7 exists,
and the chain is both 7-connected and m-aperiodic, then the limiting distribution will be 7
as well.

Theorem 8
The Fundamental Theorem of Markov chains

If there is a stationary distribution 7 for a chain that is 7-connected and 7-aperiodic,
then for a set ' with (') = 1, for all g €

[X¢| X0 =x0] = 7

in distribution.

Note: This works for both countably infinite state spaces and for continuous spaces.

14.3 Discrete Gibbs sampler

The Gibbs sampler in the Question of the Day was over a continuous state space, but it
also works for discrete spaces as well.
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Example 27
Construct a Gibbs sampler over 2 = {1, 2, 3}' where the target density is

C’Za:l] (x € Q).

Answer Consider a concrete example. If the current state is (3,2, 1,3,3,2,1,2,2, 1),
and the goal is to replace component 3, the remaining vector is x_3 =
(3,2,_,3,3,2,1,2,2,1). Note Zj# x_3 = 19. Then

f(x1,...,210)

P(z = (3,2,i,3,3,2,1,2,2,1))
P(z_3=((3,2,_,3,3,2,1,2,2,1)))
_ C(i+19)
 C(1+19)+C(2+19) +C(3+19)’

P($3 =1 ’ r_3 = ((3727_7373727 1727271)) =

since 1, 2, or 3 are the only possible values for 3. Note that the C' cancels out: this
should always happen in your Gibbs step. The result is that

t+19

]P’(wg = l ’ $_3 = ((3727_,3,3,27 1727 2, 1)) = m

So the Deterministic Scan Gibbs sampler is as follows.
dsgs_example(z)

1. For ¢ from 1 to 10

2. Draw z; from density

where s = 3., %;

3. Return x

14.4 How many steps to run?

Recall that by ensuring stationarity, all that is guaranteed is that the chain will eventually
(given an infinite amount of time) approach the target distribution. Unfortunately, there is
really no way to know for sure how long that time is.

Therefore, when actually running a Markov chain, it is customary to devote some of the
steps of the Markov chain to burn in, and some steps to gathering statistics of interest. For
instance, one might run for 10,000 steps of burn in, hopefully reaching a point where the
current state is stationary, and then run for 10,000 steps to take data.

Early practitioners often used burn in that was one tenth of the total number of steps,
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but a better number to use is one half like in the example above. The reason for this is that
if your burn in is insufficient, your sample will be biased at the beginning, and it is easier
to reduce the bias by doing more burn in than taking more statistical steps.

On the other hand, by limiting the burn in to one half of the steps, the most that you are
losing in the running time if your burn in is too long is a factor of 2, which is not too bad.

14.5 Gibbs sampling in R

So let’s consider using the chain for the Question of the Day to estimate the probability
that X1 > 0.7. (Of course, since this is a toy example, this value can be found exactly to be
0.18.)

Consider a Gibbs update for the question of the day chain that takes as input the current
state and two uniforms. The first uniform can be used to update x [1], and the second
uniform can be used to update x [2].

Recall that [ X | X3] ~ Unif([X2,1 — X3]). This interval has width 1 — 2X5. Similarly,
[X2 | X1] ~ Unif([0, X11(X; < 0.5) + (1 — X1)I(X1 > 0.5)]), so is easy to scale.

step_gibbs_gotd <- function(x, u_1l, u_2) {
x[1] <— u_ 1l x (1 - 2 x x[2]) + x[2]
x[2] <= u_2 * (x[1] = (x[1] <= 0.5) +
(1 - x[1]) * (x[1] > 0.5))

return (x)

Okay, now to undertake a burn in of 1,000 steps followed by a taking of 1,000 steps of
data.

steps <- 1000

gibbs_gotd_data <- function (steps) {
burnin <- steps
datasteps <- steps
X <- c(0, 0)
res <- rep (0, datasteps)
u_1 <- runif (burnin)
u_2 <— runif (burnin)
for (i in 1:burnin)
x <- step_gibbs_gotd(x, u_1[i], u_2[il])
u_3 <- runif (datasteps)
u_4 <- runif (datasteps)
for (i in l:datasteps) {
res[i] <— (x[1] > 0.7)
X <—- step_gibbs_gotd(x, u_3[i], u_4([i])
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}

return (res)

res <- gibbs_gotd_data(100)
mean (res)

## [1] 0.13

To understand the standard error, repeat the entire process multiple times and record
the result.

res <- replicate (5, mean (gibbs_gotd_data (1000)))
tibble (

mean (res),

sd(res) / sqgrt(length(res))

## # A tibble: 1 x 2

#4# est_mean est_sd
#4# <dbl> <dbl>
#4# 1 0.172 0.00582

So the estimate is 0.172 =£ 0.006.
Running for more steps increasing the tightness.

res2 <- replicate (5, mean (gibbs_gotd_data(1074)))
tibble (

mean (res2),

sd(res2) / sqgrt (length (res2))

## # A tibble: 1 x 2

#4# est_mean est_sd
## <dbl> <dbl>
#4# 1 0.178 0.00106

Note that the gain from running ten times as many steps resulted in a much tighter
bound on error than expected by the general 1/1/n rule.
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Utilizing AR in Gibbs steps

When sampling from a complex distribution, one or more of the [X; | X_;] steps can be
difficult to handle. In this case, using AR to obtain the one dimensional distribution could
be helpful.

As an example consider creating a Markov chain whose goal is to sample uniformly
from the area underneath

Q={(r,y):0<z<1,0<y<2*(1—2)}.

For (X,Y) ~ Unif(2), [Y|X] ~ Unif([0, X2(1 — X)]), but [X|Y] has a more compli-
cated relationship. The cubic equation can be used to solve the inequality for X given Y,
but who remembers the cubic equation?

So to generate from X, just use AR together with draws that are uniform from [0, 1].
Unfortunately, because this requires a random number of draws, the ability to write the
Markov chain as a simple update function is lost: the random draws need to be made inside
the chain.

step_gibbs_Omega <- function (p) {
pl2] < pll]l"2 * (1 - pl[l]) * runif (1)
a <- FALSE
while('a) {
X <— runif (1)
a < (pl2] <= x"2 » (1 - x))
}
pll] <= x
return (p)

To estimate P(X > 0.5), run the following

gibbs_Omega_data <- function (steps) {
burnin <- steps
datasteps <- steps
x <- c(0, 0)
res <- rep(0, datasteps)
for (i in 1l:burnin)
x <- step_gibbs_Omega (x)
for (i in 1l:datasteps) {
res[i] <- (x[1] > 0.5)
x <- step_gibbs_Omega (x)
}

return (res)
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res3 <- replicate (5, mean (gibbs_Omega_data (100)))
tibble (

mean (res3),

sd(res3) / sqgrt (length (res3))

## # A tibble: 1 x 2

## est_mean est_sd
#4# <dbl> <dbl>
#4# 1 0.064 0.0158

So the estimate is 0.640 £ 0.016.
Running for more steps increasing the tightness.

res4 <- replicate (5, mean (gibbs_Omega_data (107°3)))
tibble (

mean (resd),

sd(resd) / sqrt(length(resd))

## # A tibble: 1 x 2

#4# est_mean est_sd
i <dbl> <dbl>
#4# 1 0.684 0.00589
So with one thousand burn in and data gathering steps, the result was|0.684 &+ 0.006 |

Problems

14.1: Consider the transposition chain. Suppose the goal is to use this chain to estimate
P(z(1) < z(n)), where x ~ Unif(S,,). For n = 10, and ¢ € {10,50, 100}, try
running a Markov chain for ¢ burn in steps and ¢ data collecting steps to estimate
this probability.

Repeat your Markov chain runs 10 times and report your estimate as a & b.

14.2: Using the transposition chain above with 1000 burnin steps and 1000 data gathering
steps to estimate the probability that z(1) < z(3) and z(1) < x(7) when n = 10.
Replicate your chain run 5 times, and report your answer as a £ b.

14.3: Suppose that (X,Y) is uniform over the triangle in R? with vertices (0, 0), (0, 1),
and (1,1).
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1.00-

0.75-

>0.50-

0.25-

0.00-

0.00 0.25 0.50 0.75 1.00
X

a) What is the distribution of X given Y?
b) What is the distribution of Y given X?

14.4: Suppose that (A, B) is uniform over the area inside the unit circle:
{(a,b) : a®> +b* < 1}.

a) What is [A|B]?
b) What is [B|A]?

14.5: Implement a random scan Gibbs sampler for a Markov chain which is uniform over

10
Qlo - {(xla”'vxlO) € {07172}10 : sz : 7}
i=1

as an update function in R that takes as input the current state x, a dimension ¢ in
{1,...,10}, and a standard uniform u and returns the next state of the chain.

14.6: Implement a random scan Gibbs sampler for a Markov chain which is uniform over

5
Q5 = {(Q?l,...,l'{)) < {_17071}5 =3 < Z-rz §3}
i=1

as an update function in R that takes as input the current state z, a dimension
i €{1,...,5}, and a standard uniform u and returns the next state of the chain.
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14.7:

14.8:

14.9:

14.10:

14.11:

14.12:

Continuing the earlier problem, using 1000 burn in and 1000 data gathering steps,
estimate 3,0, X; for (X1,..., X19) ~ Unif(f49). Repeat your Markov chain 5
times and report your estimate as a & b.

Continuing the earlier problem, using 1000 burn in and 1000 data gathering steps,
estimate >, X; for (X1, ..., X10) ~ Unif(925). Repeat your Markov chain 5 times
and report your estimate as a % b.

Create a random scan Gibbs sampler that has stationary distribution uniform over
the six dimensional unit hypersphere, that is

{(#1,...,26) s 2F + - +ad <1}
Implement your sampler as an R function that inputs the current state ‘x’, a dimension

‘i‘, a standard uniform ‘u‘, and returns the next state in the Markov chain.

Create a random scan Gibbs sampler that has stationary distribution uniform over
the volume:

V:{(l‘l,...,xﬁ) € [0,1}6:$1+"'+l‘6 §3}
Implement your sampler as an R function that inputs the current state x’, a dimension

‘i', a standard uniform ‘u‘, and returns the next state in the Markov chain.

Create a deterministic scan Gibbs sampler that has stationary distribution uniform
over the six dimensional unit hypersphere, that is

{(@1,. o yme) o+ a2 < 1)

Implement your sampler step as an R function that inputs the current state ‘x’, a
vector of six iid standard uniforms ‘u‘, and returns the next state in the Markov
chain.

Create a deterministic scan Gibbs sampler that has stationary distribution uniform
over the volume:

V ={(z1,...,26) €[0,1] : 2y +--- 4 26 < 3}.

Implement your sampler step as an R function that inputs the current state x’, a
vector of six iid standard uniforms ‘u‘, and returns the next state in the Markov
chain.
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Gibbs samplers for spatial point
processes

Question of the Day

Design a Gibbs Sampling Markov chain for the Ising model on a graph G = (V, E). The

state space is
Q=1{0,1}V

and the unnormalized density is (given parameter [3)

f(z) = exp (Bh(x)).

Here h(x) counts the number of edges that have the same label on the endpoints. It can
be expressed mathematically as

{i,j}€E

For instance, on a 3 by 3 square lattice, one might have the following random draw.

O—0—0
O—0—0
00

Because there are 5 edges whose endpoints have the same label, here h(z) = 5 and this
particular configuration has weight exp(53).
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Summary

+ A Gibbs sampling chain for spatial processes typically updates one component
at a time. Usually the conditional distribution for a node only depends upon the
immediate neighbors.

Libraries

This chapter will use several libraries, such asthe t idyverse, tidygraph, and igraph
libraries for making graphs. The package ggraph will be needed for displaying graphs.

library (tidyverse)
library (igraph)
library (tidygraph)
library (ggraph)

15.1  Visualizing the Gibbs sample

The Gibbs sampler can be thought of as a Markov chain where at each step one (or more)
of the components are erased, and the value at that component is redrawn conditioned on
the values of the rest of the components.

Suppose in the 3 by 3 lattice example above that the node in the middle row on the left
hand column (call this node 4) is decided to be removed. Then there are two possible values
for that node. The node can be set to 0 or it can be set to 1.

Let x4, denote the state with node 4 valued at 0.

O—0—0
O—0—0
00

Let x4_.1 denote the state with node 4 valued at 1.
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Then h(y) = 5, and h(w) = 6. Note that the thin edges marked in dark blue contribute
to both h(y) and h(w) by 3. The thicker edges marked in light blue might contribute to h
depending on the value of node 4.

Note that the four dark blue, medium width edges will always contribute 4 to h no
matter what the value of node 4 is. If node 4 is set to o, one of the thick light blue edges
will add 1 to h, otherwise, two of the thick light blue edges will add to h.

Mathematically, let ng count the number of neighbors of node 4 that are labeled o, and
ny count the number of neighbors of node 4 that are labeled 1. That is for ng = 1 and
n1 = 2 counting the number of neighbors of 4 with labels o and 1 respectively,

h(.’E4_>()) =4+ no
h(x4_)1) =4+ ni.

Let Y be the next state of the chain. Then the Gibbs sampler says to choose Y from
the distribution given by density f conditioned on Y € {z4_,0,z4—1}. Then using the
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conditional probability formula:

P(Y = x4-0)
P(Y € {z4-0,74-1})
) exp(B(h(z1-10)))
exp(B(h(za-0))) + exp(B(h(z4-1)))
B exp(B(4 + no)
~ exp(B(4 +ng) + B(4+n1)
) exp(45) exp(Bno)
exp(4) exp(Bng) + exp(48) exp(Bn1)

Now something great happens! Both the numerator and the denominator have a factor
of exp(4/) in them that disappears.

P(Y = 2450 | Y € {2450, 74-1}) =

exp(Bno)
exp(fno) + exp(Bn1)

PY =240 | Y € {T450,04-51}) =

Of course, that factor would have canceled regardless of the labels on the edges not
adjacent to node 4. In other words, the probability of moving to a o or a 1 for the Ising
model only depends on the neighbors of the node that is being changed, the rest of the
state does not matter. This reliance on the local properties of the graph helps make this
Markov chain step much faster. This gives the following algorithm.

Step_Gibbs_Ising (z,1i,u)

1. Let ng be the number of neighbors of 4 labeled o, and n; be the number of neighbors
of 7 labeled 1.

2. Let z(i) < I(u > exp(Bno)/[exp(Sno) + exp(fni)]).

If the input ¢ is chosen uniformly from the nodes, and input u is a standard uniform,
then this step is stationary with respect to the density f.

15.2  Simulating Spatial Processes in R

If the entire n dimensional state is needed for the update, the update will take ©(n) time.

For graph G = (V,E) and i € V,let N(i) = {j : {i,j} € E} be the neighbors of i.
Let deg(i) = #(N (7)) be the degree of i.

The goal is to create an update for node ¢ that only needs time of the order of the number
of neighbors of i. That is, the goal is an update that can be done in ©(deg(7)) time. So only
pass to the state what is needed to update the current state, the values of the neighbors of
that state. That will be input as x_n.
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step_local_gibbs <- function (x_n, i, u, beta) {
n 0 = sum(x_n == 0)
n_1l = sum(x_n == 1)
return (as.integer (u < (exp(beta * n_1) /
(exp(beta « n_1) + exp(beta * n_0)))))

The data type that will be used for graphs will be the tidygraph, which is a data type
that comes from the package of the same name.

The following evaluates h for a graph g with configuration x in the tidygraph framework.
It works by pulling out the source of the edges (the from variable) and sink of the edges
(the to variable) and comparing their x value.

h <- function (x, g) {

from <- g |> activate (edges) |> pull (from)
to <- g |> activate(edges) |> pull (to)
return (sum(x[from] == x[to]))

Now create a function to burn in and then collect data from a Markov chain that keeps
at each time step the value of h.

gibbs_local <- function(steps, g, beta) {

burnin <- steps
datasteps <- steps
n <- g |> activate(nodes) |> as_tibble() [|> nrow()

x <- rep (0, n)
ul <- runif (burnin)
il <- floor(n * runif (burnin)) + 1
res <- rep(0, datasteps + 1)
for (i in 1l:burnin) {
X_n <— x[neighbors(g, il[i])]
x[11[1]] <- step_local_gibbs(x_n, il1[i], ul[i], beta)
}
res[l] <- h(x, Qg)
u2 <- runif (datasteps)
i2 <= floor(n % runif (datasteps)) + 1
for (i in l:datasteps) {
Xx_n <— x[neighbors (g, i2[i])]

h_current <- sum(x_n == x[1i2[1i]])
x[12[1]] <- step_local_gibbs(x_n, i2[i], u2[i], beta)
h_new <- sum(x_n == x[1i2[i]])
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res[i + 1] <- res[i1i] - h_current + h_new
}

return (res)

The following makes a graph that is a 4 by 4 square lattice.
g <- create_lattice(c (4, 4))

Now run the chain on graph g for 1000 burnin and 1000 data collecting steps with
B = 0.5. The goal is to estimate the probability that the value of h(x) for a draw from the
Ising model is at most 14. The whole MCMC run is repeated 5 times to get a sense of the
variance of the procedure.
res_local <-

replicate (5,

mean (gibbs_local (1000, g, 0.5) <= 14))
mean (res_local)

## [1] 0.4291708
sd(res_local) / sqrt(length(res_local))

## [1] 0.02786228

The result is an estimate of | 0.43 £+ 0.03 |

Problems

15.1: Consider an Ising model with state
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15.2:

15.3:

@00
000
00

Label the node that is in the center of the top row node 2. Suppose a random scan
Gibbs chain selects node 2 to be updated. For § = 1.2, find exactly the probability
that node 2 will be updated by the Gibbs step to have label o.

Continuing the last problem with the same graph and state, suppose the node in the
upper right corner is updated in a random scan Gibbs chain. What is the chance that
the update changes the value of the node to 1?

Consider the following graph. If a random scan Gibbs chain for the Ising model
is run on this graph, what is the maximum number of node labels that need to be
examined to take one step in the chain?
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15.4:

15.5:

15.6:

15.7:

15.8:

Consider the graph with nodes {a, b, ¢, d, e} and edges
{{a,b},{b,c},{c,d}, {d, e}, {e,a}}.

What is the maximum number of nodes that need to be examined to take one random
scan Gibbs chain for the Ising moel?

Consider the following unnormalized density for x = (z1,...,x10).
g(z) = (w129 + T223 + T34 + - - + 29710)I(2 € [0,4]'°).

Note that 21¢ only appears in the density with xg, so suppose a Markov chain is run
where g, x9, and 210 are known at the current state of the chain. Suppose a step is
taken in the Gibbs chain that replaces the tenth component.

For instance, if g(z) = 64.2, 2[9] = 3.3, and z[10] = 1.2, then setting y; = z; for
i < 10, and y190 = A where A is a random variable, then consider f4(s), the density

of A. Given these values, the sum of the first eight terms in g would be the sum of
all the terms minus the last term, so

8
g TiTit1

i=1

= 64.2 — (3.3)(1.2) = 60.24.

so the unnormalized density of A is

gA(yl()) = (60.24 + 3.3y10)]1(y10 S [0,4])

Give a function h such that for U ~ Unif([0,1]), h(U) ~ A.

Using the unnormalized density from the previous problem, suppose that X ~ g,
that > X; = 62, X1 = 0.8 and X3 = 2.9. What is the density of X5?

Continuing the last problem, you need to know g and some of the x; values to
calculate the probabilities for the changed dimension in the Gibbs chain. What is the
largest number of x; values that you need to know?

Suppose you use a random scan Gibbs chain to sample from unnormalized density

n—1
g(@) =Y wiwip
=1

What is the order of the time needed to take one step in the chain?
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Random walks on finite groups

Question of the day

Consider a standard deck of 52 cards. There are a multitude of ways to shuffle such a deck,
include the commonly used pass and riffle shuffling. But even using those methods, each
person does them in a slightly different fashion. Why does pretty much every way of
shuffling cards work?

Summary

In mathematics a group is a set equipped with a group operation such that any
member of the group can be transformed by another member of the group to get a
third member of the group. This operation has to be associative, and for every group
member, there has to be another group member that undoes the transformation of
the first.

A random walk on a finite group is a Markov chain that at each step picks a
random member of the group to apply that transformation to the current state to get
the next state.

Random walks on a finite group always have a uniform stationary distribution.

A random walk is symmetric if the probability of moving from state a to b is the
same as moving from state b to a.

Symmetric random walks conditioned to lie inside a subset of the group also have a
uniform stationary distribution.

Libraries

This chapter will utilize the tidygraph and ggraph packages to illustrate some Markov
chains.
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library (tidygraph)
library (ggraph)

Mathematically, shuffling a deck of cards is running a Markov chain whose stationary
distribution is the uniform distribution over all 52! permutations of the cards.

There are many different ways of shuffling cards. Riffle shuffling where the deck is split
in half and the two sides are randomly interlaced. Pass shuffling where a clump of cards is
taken from the bottom or middle of the deck and put on top in reverse order. Fifty-two
card pickup.

Often people will use more than one method in shuffling the deck during their turn.
And the interesting thing is, they all work! That is, pretty much any way of shuffling cards
ends up with a uniform permutation. The goal today is to answer why.

16.1  The symmetric group

A group is a set with certain properties. Each member of the group can be thought of as an
element of the set. But each element of the group can also be thought of as a particular
transformation of the set.

The permutations of (1,2, ...,n) are also called the symmetric group. Elements of the
set have this dual nature, in that they can be viewed both of a particular element of the set
and a way of transforming other elements!

For instance, the permutation

(1,2,6,4,5,3)

can be thought of as a particular permutation of cards labeled 1 through 6.
It can also be thought of as a transformation: if I apply this permutation to another
permutation, swap the third and the sixth positions. So for instance,

(5,4,1,3,6,2) ® (1,2,6,4,5,3) = (5,4,2,3,6,1).

The symbol e means to apply the transformation given by the permutation on the right
to the state on the left. If you have time and enough energy, you can prove that this type
of transformation has several important properties.

« First, the operation is associative, that is, for permutations 71, 72 and 73,

(rr@70) @73 =171 0 (79 @73).

« Second, there is an identity permutation i such that for any other permutation 7 it
holds that 7 e ¢ = 7. The identity permutation just leaves cards in place, so it is
(1,2,...,n).
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+ Third, for every permutation, there is another permutation that undoes the effects
of the first. That is, for every 7 there is a 7~! such that 7 ¢ 7=! = i. Note that
(1,2,6,4,5,3) is its own inverse, as applying the transformation twice swaps the
third and sixth cards back into their original positions!

Let’s make an official definition.
A set (G together with a binary operation e is a **group** if the following statements

hold.

1) Closure: (Va,b € G)(aeb e G).
2) Associativity: (Va,b,c € G)((aeb)ec=ae (bec)).
3) Identity: (3i € G)(Va € G)(a®i = a).

4) Inverses: Say that a is an **inverse™* of bifa @ b = be a = i. Then (Va € G)(3b €
G)(aeb="bea=1i). (Writeb=a"1)

This type of mathematical object arises in many different places.
Examples of groups and the group operation include:

. GZSn and [7’1 OTQ](i) :Tl(Tg(i)).
«G=1{..,-2,-1,0,1,2,...}andiej =i+
G=9Qp\{}andaeb= (a)(d).

G is the set of n by m matrices with invertible entries,and A e B = A + B.

« G is the set of 2 by 2 invertible matrices with real entries, and A e B = AB.

Once you have the rules for groups, it is possible to prove fun facts like (g~!)~! = g.

For g ina group G, (¢-1)~! =g.

Letg € G. Thenge g~! = g~ @ g = i, s0 g fits the definition of the inverse of g~ ..
Thatis, g = (g~ 1)~ L.

Another useful fact is that inversion flips the order of the e operator.

For g1, g2 elements of a group g, (g1 ® g2) ™! = g;l ° gfl.

Again the proof just comes from verifying that g, le 97 ! has the desired properties of
an inverse using the associativity and identity rules:

(gr1eg2)e (g5 g ) =gie(g2095")eg")
29101'091_1
=g eg’
— .

Showing that (gg_1 ° gl_l) e (g1 ® go) = i is similar
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Recall our permutation Markov chain where a permutation is chosen uniformly from
the set of transposition permutations.

Say that 7 € S, is a **transposition permutation® if #{i : 7(i) # i} < 2.

Then the transposition Markov chain is as follows.

Algorithm 5
Permutation_random_walk(z)

1) Choose 7 uniformly from the set of transpositions permutations

2) Return x e 7

This idea can be generalized to any group, any subset of that group, and any probability
distribution over that group.

Let M be arandom variable over a group G, and Xy € G. Let My, My, ... beiid M, and
fort € {1,2,3,...}, set X; 11 = X, @ M. Then the stochastic process {X;} is a **random
walk on a group™.

This includes things like shuffling cards (any of the techniques) or mixing up a Rubik’s
cube.

Time for a universal theorem: no matter what the random walk, the uniform distribution
over a finite group is uniform!

A random walk over a finite group has the uniform distribution as a stationary distribu-
tion.

Let G be a group, X; ~ Unif(G), and let g € G. Then

P(Xes1=9) = ) P(Xep1 = g, Xe = )

jeG

= ZP(Xt = J)P(Xep1 =g | Xe =)
jeG

:#(1G)ZIP’(g:j'Mt)

jeG

Note that g = j @ M; < j~1 e g = M)
At this point, note that for fixed group element g, j — j !¢ is a 1-1 and onto map.

. Itis onto because for k € G, (ge k™)1 = (k") leg leg=F.

o It is 1-1 because ifjf1 °g = jgl e g, then operating by $g"{-1} on the right gives
Ji 1— Ja ! and then operating by j; on both sides on the right and j, by both sides
on the left gives j; = ja.
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Therefore,
1
P(Xey1=9) = 5= > _P(M; = j " e g)
1
= > P(M;=k)
Fa
1
#(G)’
since the probability M; = k summed over all £ € G has to add up to 1.
This is why people do not have to worry when mixing up a Rubik’s cube or shuffling a
deck of cards. Any way of doing so will give the uniform distribution!

16.2  Uniform stationary distributions

Many Markov chains are symmetric, meaning that the probability of moving from one state
to another is the same as the chance of moving from the second state back to the first state.

Definition 38
A finite state Markov chain { X} is symmetric if

Vr,y e Q)P Xy =y | Xpm1=2) =P(Xy =2 | Xyo1 =1y)).

A nice thing about symmetric Markov chains is that the uniform distribution is stationary.

Fact 32
Symmetric Markov chains have the uniform distribution over the state space as a sta-

tionary distribution.

Proof. Suppose that M is a symmetric Markov chain, and X;_; is uniform over 2. Then
let z € Q and consider P(X; = z. For this event to occur, X;_1 had to be some state ¥,
and summing over the probabilities gives back the target probability.

P(X;=z)=> P(X;=2,X11=1y)

= Z]P’(Xt =z[Xi1 = y)P(Xs-1 = y)
Y

= P =yl Xi 1 = )(1/#(@)

= 1/#(Q).

The rest of the sum evaluates to 1, since if X;_; = x, summing over the probabilities
of moving to every other state in the Markov chain yields 1, since the state must move
somewhere! This completes the proof. O
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Getting back to groups, suppose that the Markov chain does not wander over the entire
group G, but over a subset of the group S. If the random walk attempts to take the state
outside S' partial reflection occurs, and the state stays exactly where it was.

Let M be a random variable over a group G, and My, Mj, ... be an iid stream of draws
from M. Fix S C G. Then for X; € S, let

X o Xt.M let.MGS
1= Xt letOM¢S

Say that the stochastic process { X} forms a **random walk on a group with partially
reflecting boundaries™.

Suppose G is all integers, S = {1,...,n},and M ~ Unif({—1, 1}). Then at each step
of the Markov chain, the state is either added to by 1 or subtracted from by 1. But if that
move would cause it to leave {1, ..., n}, then it stays where it currently is. This is a simple
symmetric random walk on {1, ..., n} with partially reflecting boundaries.

Unlike the random walk over the entire group, the stationary distribution might not be
uniform. However, if the distribution of M is symmetric it will be.

Say that a random variable M over a group G is symmetric if P(M = m) = P(M =
m~!) forallm € G.

Suppose that a random walk on S C G with partially reflecting boundaries uses sym-
metric draws M. Then the chain is symmetric, and the uniform distribution over S is
stationary for the chain.

Note for all z and y in .S,

p(z,y) =P(My =yz ") =P(My = (ya~ ")) =P(My =y~ ") = p(y, x).

Continuing our simply symmetric random walk with partially reflecting boundaries, the
uniform distribution over {1,...,n} is stationary.

16.3 Sampling uniformly using random walks in R

Consider the problem of sampling uniformly from the group of integers mod n. For instance,
when n = 10, the graph looks like this:

create_ring (10) %>%

ggraph ( "kk") +

geom_edge_link () +

geom_node_point ( 12, 21, "black",
"steelblue") +

geom_node_text (aes ( 0:9), "white",
0.4) +

theme_graph() +

coord_cartesian ( 'off'")
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The step M € {—1,1}, and the group uses addition with modular arithmetic, which
means if the state reaches n, then it starts over at o. The step looks as follows

step_ring <- function(x, m, n) return((x + m) %% n)

Note that any distribution on M will result in a uniform stationary distribution! For
instance, suppose P(M = —1) = 0.7and P(M = 1) = 0.3.

ring_walk <- function (steps, n) {
burnin <- steps
datasteps <- steps
ml <- as.integer (2 * (runif (burnin) < 0.3) - 1)
x <— 0
for (i in 1l:burnin)
x <- step_ring(x, ml[i], n)
m2 <- as.integer (2 * (runif (datasteps) < 0.3) - 1)
x <- c(x, rep(0, datasteps)) # reserve memory space
for (i in l:datasteps)
x[1 + 1] <= step_ring(x[i], m2[i], n)
return (x)

Now test it out:
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res <- ring_walk (10000, 10)
ggplot () +
geom_bar (aes (res))

1000 -
750
IS
3 500-
o
250 -
O_
1 1 1 1
0.0 25 5.0 7.5
res
Now suppose the goal is to sample from {1,...,n}.

create_path(10) %>%

ggraph (layout = "linear") +
geom_edge_link () +
geom_node_point (size = 12, shape = 21, color = "black",
fill "steelblue") +

geom_node_text (aes (label 1:10), color = "white",
vjust 0.4) +

theme_graph() +

coord_cartesian(clip 'off")
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Now when we try to reduce the node value by 1 from node 1, the state stays the same.
Similarly, an attempt to increase the node value from 10 by 1 leaves the state at 10.

step_path <- function(x, m, n) return(max(0, min(x + m, 10)))

path_walkl <- function (steps, n) {
burnin <- steps
datasteps <- steps
ml <- as.integer (2 * (runif (burnin) < 0.3) - 1)
X <—= 0
for (i in 1:burnin)
x <- step_path(x, ml[i], n)
m2 <- as.integer (2 * (runif (datasteps) < 0.3) - 1)
X <- c(x, rep(0, datasteps)) # reserve memory space
for (i in 1l:datasteps)
x[1 + 1] <- step_path(x[i], m2[i], n)
return (x)

Now test it out:
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res_pathl <- path_walkl (10000, 10)
ggplot () +
geom_bar (aes (res_pathl))

6000 -

4000 -
o
c
>
o
o

2000 -

0 2 4 6 8
res_pathl

Because the chain moves left must more than to the right, the state tends to clump near

1. Making the moves symmetric returns the stationary (and hence limiting) distribution to
uniform

path_walk2 <- function (steps, n) {
burnin <- steps
datasteps <- steps
ml <- as.integer (2 * (runif (burnin) < 0.5) - 1)
x <-= 0
for (i in 1:burnin)
x <- step_path(x, ml[i], n)
m2 <- as.integer (2 * (runif (datasteps) < 0.5) - 1)
x <- c(x, rep(0, datasteps)) # reserve memory space
for (i in 1:datasteps)
x[1 + 1] <- step_path(x[i], m2[i], n)
return (x)

Now test it out:
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res_path2 <- path_walk2 (10000, 10)

ggplot () +
geom_bar (aes (res_path2))

count

16.1:

16.2:

16.3:

1000 -
750 -
500 -
250 -
O -
0.0 25 5.0 75 10.0
res_path2
Problems

Consider taking a asymmetric random walk on the integers mod 5 (so the state space
is {0,1,2,3,4}), using M where P(M = —1) = 0.6 and P(M = 1) = 0.4. So with
probability 0.4 add 1 to the current state, and if it reaches 5 replace it with a o. Else
(with probability 0.6) add -1 to the current state, and if it reaches -1 replace it with a
4. This chain is aperiodic and connected.

This chain has a limiting (normalized) distribution. What is it?

Consider taking a random walk on the integers mod 100. At each step, we add either
1, 2, 3, or 4, each with probability 1/4. This chain is aperiodic and connected. This
chain has a limiting distribution. What is it, and how do you know?

Again consider the random walk over the integers mod 5 with move
P(M =-1)=0.6, P(M =1) =0.4.

Implement the chain. Using 10* burnin steps and 10* data gathering steps, estimate
the mean of the limiting distribution.
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16.4: Consider taking a random walk on the integers mod 100. At each step, we add either

16.5:

16.6:

16.7:

16.8:

1,2, 3, or 4, each with probability 1/4. This chain is aperiodic and connected. This
chain has a limiting distribution.

Implement the chain. Using 10° burnin steps and 10° data gathering steps, estimate
the mean of the limiting distribution.

Suppose that (X,Y) is uniform over the triangle in R? with vertices (0, 0), (0, 1),
and (1,1).

1.00-

0.75-

1, 1)

i 0.50-

c(0

0.25-

0.00 O.:’ZS O.I50 O.I75 1.00
c(0, 0, 1)

Write code for one step in a random walk with partially reflecting boundaries over
this region that takes as input the current state and a vector with two components,
and returns the next state.

Suppose that (X, Y) is uniform over the interior of an ellipse given by
A={(z,y):2*+2° < 1}.

Write code for one step in a random walk with partially reflecting boundaries over
this region that takes as input the current state and a vector with two components,
and returns the next state.

Returning to the step for the triangle problem from earlier, use 10 replications of
your chain for 10* burnin and data gathering steps to estimate E[X].

Returning to the step for the ellipse problem from earlier, use 10 replications of your
chain for 10* burnin and data gathering steps to estimate E[X].
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16.9: Suppose that a Markov chain with state space [0, 10] uses a random walk with
partially reflecting boundaries. The move is a beta with parameters 3 and 3 minus
0.5. Note that the density of this move is

f(s) = (1/2+ 5)%(1/2 — 5)%I(s € [-0.5,0.5]),

which is symmetric around o (since f(s) = f(—s).)
This Markov chain has a limiting distribution equal to the stationary distribution.

What is this distribution?

16.10: Suppose that a Markov chain with state space [—5, 5] x [—5, 5] uses a random walk
with partially reflecting boundaries. The move is two dimensional (Z;, Z) where
the Z; are iid standard normal random variables.

This Markov chain has a limiting distribution equal to the stationary distribution.
What is this distribution?
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Auxiliary random variables Markov
chains

Question of the Day

Design an auxiliary variable Markov chain to approximately sample from unnormalized

density
g(x) = 2*(1 — 2)I(x € [0,1])

with respect to Lebesgue measure.

Summary

« Adding an auxiliary random variable can convert a density problem to a uniform
problem.

« Using Gibbs sampling with auxiliary random variables can result in a chain that
mixes much faster.

« If the density is a product, then an auxiliary random variable can be added for each
term in the product. This gives the product slice sampler.

Libraries

The libraries used in this chapter include
« tidygraph for manipulation of graphs,
« igraph for storing graphs,

« and ggraph for displaying graphs.
library (tidygraph)
library (igraph)
library (ggraph)
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Random walks with partially reflecting boundaries can be used to draw uniformly from
complicated sets. When it is needed to sample from a density (unnormalized) over a space,
auxiliary variables can be used to make the problem uniform.

Recall that if random variable X has density f with respect to some measure, making

[Y | X] ~ Unif([0, f(X)]) creates a joint distribution

(X,Y) ~ Unif({(z,y) : 0 <y < f(2)}).

Conversely, if (X,Y) ~ Unif({(z,y) : 0 <y < f(x)}), then X ~ f.

To turn this into a Markov chain, utilize Gibbs sampling. Drawing Y given X is easy.
More difficult is to draw X given Y. The value of X is chosen uniformly from the set of
values x such that f(z) > Y. This is called the slice sampler.

Definition 39
A slice sampler Markov chain to draw X from density f works as follows. First, draw
Y uniformly from [0, f(X)]. Second, draw X uniformly from {z : f(z) > Y}.

17.1  Slice sampler for product form densities

In the Question of the Day, this means drawing X such that X2(1 — X) > Y. This can be
solved with a cubic equation, but it is easy to find examples that are even more difficult to
solve.

An alternate solution is to employ an auxiliary random variable for every factor in the
product of the density.

In the Question of the Day,

flx)=221-2)(z€[0,1]) =z -z- (1 —2)I(z € [0,1]).

There will be a Y7 for the first x factor, a Y5 for the second x factor, and Y3 for the 1 — x
factor. Then the draw for X must satisfy, Y7 < X, ¥V < X, Y3 <1 - X,s0 X <1-Ys.
This yields the following algorithm.

Algorithm 6
step_qotd_slice_sampler(X)

1) Draw Y7 ~ Unif([0, X]).
2) Draw Y3 ~ Unif([0, X]).
3) Draw Y3 ~ Unif([0, 1 — X]).

4) Draw X ~ Unif([max(Y1,Y2),1 — Y3]).
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More generally, the product slice sampler can be defined as follows.
The product slice sampler for unnormalized density

f)=1] fi=)
i=1

operates as follows. For each ¢ from 1 to m, draw Y; ~ Unif([0, f;(X)]) uniformly. Then
draw X uniformly from

(z: file) = Yi).
=1

Swendsen and Wang (1986) (Swendsen and Wang 1986) were the first to use a product
slice sampler, for the Ising model. The idea was generalized by Edwards and Sokal (1998)
(Edwards and Sokal 1983).

Swendsen-Wang algorithm

Recall that the Ising model over graph G = (V| F) has an unnormalized density that can
be written as

exp | 8 Y Wa@)==(j) | = [ ewBl@)==2().

{i,j}€FE {i,j}€eFE

Therefore, the product slice sampler applied to the Ising model draws an auxiliary
random variable uniformly from o to exp(S8I(x(i) = x(j))) for every edge E in the graph.

So if z(7) # x(j), then the auxiliary variable Y, ;) is uniform over [0, 1], and if (i) =
z(j), then it is uniform over [0, exp(3)]. Suppose the value of Y; j; = 0.92.... This is
compatible with either (i) = 2(j) or x(i) # x(j), and so the choice of X is indifferent to
these two possibilities.

On the other hand, if # = 1 and YJ; ;; = 1.42.. ., then the only compatible configura-
tions have to have x(i) = x(j). Across the graph, the edges with Y}, j; > 1 have to have
the X value equal at both endpoints. This divides the graph into clusters, sets of vertices
that are connected by a path using edges with Y, > 1. (These clusters of the graph are also
known as connected components.)

For example, suppose this is our Ising state.
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Then after drawing the auxiliary random variables:

Now only keep those edges labeled with a value above 1:
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Note two things.

« The chance of keeping an edge is (exp(8) — 1)/(exp(5) — 0), or just 1 — exp(—0).
So instead of uniforms, Bernoullis with parameter 1 — exp(—/3) could have been
used to keep edges.

» The kept edges must connect nodes with the same label.

I

©0—O

The components function can be used to find the components for the graph when only
keeping these two edges.
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clusters <-
gotd_ising [|>
activate (edges) |>
filter(sw > 1) |[|>
components ()
clusters

## Smembership

## [1] 1L 2 3 4256 77
##

## Scsize

## [1] 1211112

4
## Sno
#4# (11 7

This says that there are 7 components, and the membership indicates the name of the
cluster. For instance, both nodes 8 and 9 are part of cluster 7.

To continue taking the step in the Swendsen-Wang chain, the clusters must be assigned
labels uniformly from {0, 1}.

colors <- as.integer (runif (clusters[["no"]]) > 0.5)
Then the colors variable is:
colors

## [1] 001 1111

In this random draw, the first and second cluster will be assigned label o, while the
remaining clusters will be assigned label 1.

labels <- colors[clusters[["membership"]]]
labels

## [1] 001 1 01111

Since the second cluster consisted of nodes 2 and 5, both these nodes were labeled 0.
gotd_ising3 <-

gotd_ising |>

activate (nodes) |>

mutate ( labels)
gotd_ising3 |> ggraph_lab_ising/()
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17.2  Product slice samplers in R

Begin with the product slice update for f(z) = z2(1 — z)I(x € [0,1]). Remember the
algorithm starts with a state X, and then draws

[(Y1, Y2, ¥3) | X] ~ (Unif([0, X1]), Unif([0, X]), Unif([0, 1 — XT)),

where the components are independent.
Then [X | Y] ~ Unif(max(Y1, Y2),1 — Y3). This can be implements as follows.

step_gotd_pss <- function (x, u) {
y <— c(x » ul[l], x = uf[2], (1 - x) %= ul3
x <= ((1 = yI[3]) - max(y[1l], y[2])) » ul
return (x)

Test it out by estimating P(X < 0.3).

chain_gotd_pss <- function (steps) {

burnin <- steps
datasteps <- steps
X <— 0.5

res <- rep(0, datasteps)
ml <- runif (burnin)
m2 <- runif (burnin
m3 <— runif(
(

)
burnin)
m4 <— runif )

burnin
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for (i in 1l:burnin) {
x <- step_gotd_pss(x, c(ml[i], m2[i], m3[i], md4[i]))
}
m5 <- runif (datasteps)
m6 <- runif (datasteps)
m7 <- runif (datasteps)
m8 <- runif (datasteps)
for (i in l:datasteps) {
res[i] <- (x <= 0.3)
x <- step_gotd_pss(x, c(mb[i], m6[i], m7[i], m8[i]))
}

return (res)

res <- replicate (10, mean (chain_gotd_pss(1074)))
tibble (

mean (res),

sd(res) / sqgrt(length(res))
) | > kable ()

est_mean est_err
0.08303 | 0.0008636
A longer run gives

res <- replicate (10, mean (chain_gotd_pss(1075)))
tibble (

mean (res),

sd(res) / sqgrt(length (res))
) |> kable()

est_mean est_err

0.083743 | 0.000429
So the estimate is ‘ 0.08375 £ 0.00044 |.

Swendsen-Wang in R

A step in the Swendsen-Wang algorithm on a graph G = (V, F) with n = #(V') nodes
and m = #(F) edges requires a set of n iid Bern(1/2) random variables, and m iid
Bern(exp(—0)). Given these inputs, the algorithm proceeds using the components
function to determine the connected components of the graph, and recolors appropriately.

This method of writing the step does waste some of our random choices, since the
number of clusters could be smaller than the number of nodes. Taking advantage of this
would require code that does not follow our update function way of running Markov chain
steps, so for expediency this will be ignored.
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step_swendsen_wang <- function(x, g, node_bern, edge_bern) {
return (node_bern|

(g |>
activate (edges) |[>
filter (edge_bern == 1) |>
components ()) [ ["membership"]1]])

Each step in Swendsen-Wang rewrites every node, and takes ©(m) time to run. So there
is no harm from a computational complexity point of view in recalculating h directly after
each step.

h_graph <- function (x, g) {

from <- g |> activate (edges) |> pull (from)
to <- g |> activate(edges) |> pull(to)
return (sum(x[from] == [to]))

Similarly, there is no need to generate the random variables all at once.

chain_swendsen_wang <- function(steps, g, beta) {
burnin <- steps
datasteps <- steps
n <- g |> activate(nodes) |> as_tibble() [|> nrow()
m <- g |> activate(edges) |> as_tibble() |> nrow/()
x <— rep(0, n)
for (i in 1l:burnin)
x <— step_swendsen_wang (
X, g, as.integer(runif(n) < 0.5),
as.integer (runif (m) < (1 - exp(-beta))))
res <- rep(0, datasteps + 1)
for (i in l:datasteps) {
x <— step_swendsen_wang (
X, g, as.integer (runif(n) < 0.5),
as.integer (runif (m) < (1 - exp(-beta))))
res[i] <- h_graph(x, 9g)
}

return (res)

g <—- create_lattice(c (4, 4))
res_local <- replicate (5,
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(chain_swendsen_wang (100,
create_lattice(c (4, 4)), 0.5) <= 14) |>

mean ()
)
tibble (
mean (res_1local),
sd(res_local) / sqrt(length(res_local))
) |> kable ()
est_mean est_err

0.1643564 | 0.0155291

Therefore, the resulting estimate is | 0.479 £ 0.025 |

Problems

17.1: Consider the density proportional to
gx () = sin(zx) cos(x)I(z € [0,7/4]).

a) For a product slice sample, what are the distributions of Y7, Y2, and Y3 given
X?

b) For a product slice sample, given (Y7, Y2, Y3), what is the distribution of X?
17.2: Consider the density proportional to
gw (w) = wezp(—2w)I(w > 0).
a) For a product slice sample, what are the distributions of Y7 and Y5 given W?

b) For a product slice sample, given (Y7, Y2), what is the distribution of W?

17.3: Going back to
gx () = sin(zx) cos(x)*I(z € [0,7/4]),

implement an update function that takes as input the current state x and a vector of
four numbers u and returns the next state after updating Y7, Y5, Y3, X in that order.

17.4: Consider the unnormalized density f(z) = /2 exp(—z)I(z € [0, 2]).

a) Write R code for a product slice sampler that takes as input the current state
and three standard uniform random variables, and returns the next state in the
Markov chain.

b) Use your code, with 10* steps in the Markov chain and 10 replications to
estimate E[X] for X ~ f.
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17.5: Use 1000 steps of burnin and data gathering Markov chain Monte Carlo to estimate
the mean of a draw from the density sin(x) cos(x)?I(z € [0,7/4]). Replicate 10
times and report the estimate as a £ b.

17.6: Use 1000 steps of burnin and data gathering Markov chain Monte Carlo to estimate
the mean of a draw from the density x exp(—2z)I(x > 0). Replicate 10 times and
report the estimate as a £ b.
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The Metropolis method

Question of the Day

Consider a simple symmetric random walk Markov chain on {1, 2, ...} that adds 1 or -1 to
the current state with equal probability unless that would move the state below 1, in which
case stay where you are. Modify this Markov chain so that the stationary distribution is

using the Metropolis method.

Summary

« The Metropolis-Rosenbluth-Rosenbluth-Teller-Teller (MR?T?) algorithm is a
combination of random walk with partially reflecting boundaries and an auxiliary
random variable.

« MR?T? takes as input a random walk on a group together with a target density p. It
creates a new chain as follows. At each step from current state X, propose a group
move M so that X e M would be the next step in the random walk. Then draw a
standard uniform U. Accept the move in the Metropolis chainif U < p(XeM)/p(X),
otherwise reject the move and stay at the current state.

18.1 MR*T?

The middle of the 20th century was dominated by the effects of World War II. One of
the scientific breakthroughs that the war brought was the creation of the first electronic
computers. Early examples could do hundreds or thousands of mind numbing calculations,
which altered the development of algorithms forever.

Markov chain Monte Carlo (MCMC) arose out of that era, as researchers realized that
these computers were perfectly suited to repeating random trials over and over again. The
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first major MCMC algorithm was a combination of a random walk with partially reflecting
boundaries and an auxiliary random variable. Developed by Nicholas Metropolis, Arianna
Rosenbluth, Marshall Rosenbluth, Augusta Teller, and Edward Teller (Metropolis et al.
1953). For this reason, it will be referred to as MR?T? here.

Suppose the goal is to build a Markov chain over a state space () that is a group, where
the output X has density p. Then given X ~ p, let [W | X] ~ Unif([0, p(X)]), and
consider the augmented space (x 1y = {(7,w) : x € Q,0 < w < p(z)}. Then as seen
earlier, (X, W) ~ Unif(x ).

Now consider the following algorithm. Starting at state X, draw W uniformly from
[0, p(X)]. Then draw M according to a symmetric function on the group. Now consider
the point (X e M, W). If this point is in {)(x 1), then move to (X e M, W) and return
X o M as the next state. Otherwise, stay at (X, W), and return X as the next state.

Now consider the chance that (X e M, W) is in x ). Recall that the simulation can
use W = p(X)U, where U is a standard uniform number. Note that (X e M, W) € Qx w)

. p(X o M)>

(W < p(X o M)) = (p(X)U < p(X o M)) = (U < M

This leads to the following definition of MR?T?,

Definition 40
Given a group €2 and M a random variable over the group, let My, My, ... be iid M,
U, U1, Us, . .. be iid Unif([0, 1]). Then the MR?T? Markov chain uses

X :{ Xio My ifU, < p(X eM)/p(X)
1=y, if Uy > p(X o M)/p(X)

Of course, for these chains to be useful, it is necessary that they be ¢-aperiodic. To
be connected, it is necessary to find paths between regions using the proposed moves.
Because these chains tend to have a positive probability of staying in place for all states in
the chain, they are usually automatically aperiodic.

Solving the Question of the Day

There are an infinite number of choices for M that solve the question of the day. A simple
one is M ~ Unif({—1, 1}), and the group operation is just addition.

MR2T?2 accepts the proposed move when a standard uniform is smaller than the density
of the proposed move divided by the density of the current state.

The density is p(i) = [1/i%]I(i € {1,2,...}). So if X is the current state and X; + M,
the proposed move, then acceptance occurs for U ~ Unif(]0, 1]) when two things happen.
First, X; + M; must be at least 1, and second:

[1/(X¢ + My)?]
Vs T
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Note that if X; + M; = 0, reject, but 1/(X; + M,) is undefined. A clever way to write this
in one line using indicator functions is:

[1/((X¢ + My)? + (X 4+ My = 0))]L(X; + My > 1)
/(X2
XPU(X, + M; > 1)
(X + M)?2 + (X + My =0)°

That way the denominator is never o, but if X; + M; = 0 the whole fraction still evaluates
to o!

U<

Then the update step looks as follows.

step_mrrtt_qotd (z,m, u)
1) Lety < = + m.
2) Ifu < (22/[y + I(y = 0)]*)I(y > 1), return v,

3) Else return(z).

18.2  Acceptance rate

The one choice that the designer of an MR?T? chain has is the choice of the random move
M. If this move is too ambitious, then the chain will be relatively unlikely to accept the
move. If this move is too small, then the chain will tend to sit in one area and not move
around the state space.

Definition 41
Let M be an MR?T? chain with stationary distribution 7. Then for X; ~ T, P(Xy1 =
X}) is the acceptance rate of the chain.

A rule of thumb is to keep the acceptance rate around 1/4, but really anything in the
[1/4,1/2] range is good. See (Roberts and Rosenthal 2001) for a justification. An acceptance
rate of 1/4 indicates a chain that is trying to move to new areas, but not trying to jump so
far that the chain is staying at the same state too much.

18.3 MR2T? chains in R
Begin with the question of the day. The MR?T? chain step is as follows.

step_gotd_mrrtt <- function(x, m, u) {
y <— X + m
if (u <= (y > 1) = x°2 / (y + (y < 1))"2)
return (y)
else
return (x)
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Now burn in the chain and collect data.

chain_gotd_mrrtt <- function (steps) {
burnin <- steps
datasteps <- steps

x <— 1
res <- rep (0, datasteps)
ml <- 2 % (runif (burnin) < 0.5) - 1

ul <- runif (burnin)
for (i in 1l:burnin) {
x <- step_gotd_mrrtt(x, ml[i], ul[i])
}
m2 <— 2 x (runif (burnin) < 0.5) -1
u2 <- runif (burnin)
for (i in 1l:datasteps) {
res[i] <- x
x <- step_gotd_mrrtt(x, m2[i], u2[i])
}

return (res)

Finally, consider the output using a histogram.

tibble (
chain_gotd _mrrtt (10°5)
) 1>
ggplot (aes (x)) +
geom_bar (aes ( (..count..)/sum(..count..)),
"blue", "black") +

theme_minimal () + ylab ("frequency") + xlab("i")
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To find the acceptance rate, keep that as an extra data point.

chain_gotd_mrrtt_accrate <- function (steps) {
burnin <- steps
datasteps <- steps
x <— 1
res <- rep (0, datasteps)
ml <- 2 % (runif (burnin) < 0.5) - 1
ul <- runif (burnin)
for (i in 1l:burnin) {
x <- step_gotd_mrrtt(x, ml[i], ul[i])
}
m2 <- 2 % (runif (datasteps) < 0.5) - 1
u2 <- runif (datasteps)
for (i in l:datasteps) {
old x <- x
x <- step_gotd_mrrtt(x, m2[i], u2[i])
res[i] <- old x != x
}

return (res)
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res <- replicate (10, mean (chain_gotd_mrrtt_accrate(1074)))
tibble (

mean (res),

sd(res) / sqgrt(length (res))
) |> kable ()

est_mean est_err
0.61529 | 0.0135131
An acceptance rate of about 61% is a touch too high, but in fact with this particular state
space and density acceptance always occurs when the state moves to the left. Therefore,
the acceptance rate will always be at least 50%, so this is not too bad.

A continuous example

This method works just as well on continuous problems. Here only one dimension will be
used to keep things simple, but most often in practice MR?T? is used on high dimensional
problems.

Consider the probability of sampling from a standard normal distribution, A proposal
move will involve adding a uniform over [—s, s|. Here s is the scale of the move. Other
than that, things are pretty much the same as in the discrete case.

step_normal_mrrtt <- function(x, m, u) {
y <— X + m
if (u <= dnorm(y) / dnorm(x))
return (y)
else
return (x)

Now run the chain as usual. A tibble will be used to return both the chain state and the
acceptance rate data.

chain_normal_mrrtt <- function(steps, 0.1) {
burnin <- steps
datasteps <- steps
x <=0
ml <- 2 x s % runif (burnin) - s

ul <- runif (burnin)
for (i in 1l:burnin) {
x <- step_normal_mrrtt(x, ml[i], ulflil])

}

m2 <— 2 x s x runif (datasteps) - s
u2 <- runif (datasteps)
res_acc <- rep (0, datasteps)
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res_state <- rep (0, datasteps)
for (i in l:datasteps) {
old x <- x
x <- step_normal_mrrtt(x, m2[i], u2f[il])
res_acc[i] <- old x !'= x
res_state[i] <- x
}

return (tibble (res_acc, res_state))

Gather the data:
res <- chain_normal_mrrtt (1075, 0.1)

First look at the histogram of the output:

res |>
ggplot () +
geom_histogram(aes (res_state), "blue", "blac

theme_minimal ()

## ‘stat_bin() " using ‘bins = 30'. Pick better value with ‘binw

8000

6000

4000

count

2000

-2 0 2
res_state
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Next look at the summary statistics of the acceptance rate:

res |>
summarize (
mean (res_acc),
sd(res_acc) / sqrt(length (res_acc))

## # A tibble: 1 x 2

#4# est_rate est_err
## <dbl> <dbl>
## 1 0.980 0.00044¢6

So the chain accepted around 98% of the time. Far too high! This can be lowered by
increasing s, the scale parameter for the move.

res?2 <- chain_normal_mrrtt (1075, 0.5)
res2 |>
summarize (
mean (res_acc),
sd(res_acc) / sqrt(length(res_acc))

## # A tibble: 1 x 2

#4# est_rate ese_err
## <dbl> <dbl>
#4# 1 0.901 0.000943

Down to 90%, still pretty high.

res3 <- chain_normal_mrrtt (1075, 2)
res3 |>
summarize (
mean (res_acc),
sd(res_acc) / sqrt(length(res_acc))

## # A tibble: 1 x 2

#4# est_rate est_err
#4# <dbl> <dbl>
#4# 1 0.632 0.00153
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Closer to our target.

res4 <- chain_normal_mrrtt (1075, 10)
resd |>
summarize (
mean (res_acc),
sd(res_acc) / sgrt(length(res_acc))

## # A tibble: 1 x 2

#4# est_rate est_err
## <dbl> <dbl>
#4# 1 0.160 0.0011l6

Oops, overshot.

res4 <- chain_normal_mrrtt (1075, 5)
resd4 |>
summarize (
mean (res_acc),
sd(res_acc) / sqrt(length(res_acc))

## # A tibble: 1 x 2

## est_rate est_err
#4# <dbl> <dbl>
#4# 1 0.312 0.00147

There is a good acceptance rate! The chain is now moving about 31% of the time, which
means that it is exploring new areas quickly. It should be noted that just because the
acceptance rate is near 1/4 does not prove that the chain is mixing quickly, but it is a good
start.

Problems
18.1: Consider the unnormalized density
gx(s) = exp(—s*2)I(s = 0).

a) Write code for a Metropolis-Hastings step with proposal move ¥ = X + M
where M ~ Unif([-2,1]).

b) Use your code with 10 replications of 1000 burnin and data gathering steps to
estimate E[X]. Report your result as a + b.
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18.2: Consider the unnormalized density f(i) = [1/v/i]I(i € {1,2,...}.

a. Write R code for a single update in a MR?T? Markov chain that has f as the
stationary distribution.

b. Use your code, with 10* steps in the Markov chain and 10 replications to estimate
E[X] for X ~ f.
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The Metropolis-Hastings method

Question of the Day

Design a Markov chain on {1,2,...} using P(M = —1) = 0.6 and P(M = 1) = 0.4 for
proposals whose stationary distribution is

P(X = i) = %H(i € {1,2,...)).

Summary

« Given a target density p and a proposal density ¢(x, -) from the current state x such
that for all pairs of states (a,b), (¢(a,b) > 0) = (q(b,a) > 0), the Metropolis-
Hastings algorithm accepts the proposal with probability

« The Metropolis-Hastings chain has stationary distribution density p.

The MR2T? chain can be used to turn a symmetric random walk with partially reflecting
boundaries into a chain whose stationary distribution is the target distribution. The
mechanism is to accept or reject the proposed state with a certain probability formed from
using an auxiliary random variable.

The next step is to try to turn a nonsymmetric random walk into a chain whose stationary
distribution is the target distribution. The way this will be done is using the idea of
reversibility of a Markov chain.

19.1  Reversible Markov chains

To understand what reversible means, consider the simple symmetric random walk with
partially reflecting boundaries on {1, 2, 3,4, 5}, where the move is M ~ Unif({—1,1}).
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Suppose X; ~ m, and then consider the distribution of the pair (X¢, X;1). Each of these
has a density. For instance:

P((Xt, Xt41) = (3,4)) = (1/5)(1/2)
P((Xt, Xe41) = (1,1)) = (1/5)(1/2)
P((Xt, Xt41) = (3,5)) = (1/5)(0).

The probability of each pair (x,w) is the probability that X; = w times the probability
that X;,; = w given that X; = w. Now consider the reverse of the three pairs given
above:

P((Xt, Xt41) = (4,3)) = (1/5)(1/2)
P((Xt, Xe41) = (1,1)) = (1/5)(1/2)
P((Xt, Xt41) = (5,3)) = (1/5)(0).

The probabilities are the same! This means that if I start the Markov chain Xy ~ 7 and
run the Markov chain forward in time (Xg, X1, ..., X},), the distribution of these states
will be exactly the same as that of (X,,, X;,—1, ..., Xo) where X,, ~ X,,. Running video
of this chain looks the same whether the video is run forward or in reverse. Such a Markov
chain is called reversible with respect to p.

Definition 42
Suppose that for X; ~ v, (X, X¢4+1) has the same distribution as (X1, X¢). Then the
chain is reversible with respect to v.

For (X}, X¢41) to have the same distribution as (X;+1, X¢), X; and X4 must have the
same distribution. This means that reversible with respect to v implies that v is a stationary
distribution for the chain.

Fact 33
If a Markov chain is reversible with respect to v, then v is a stationary distribution for
the chain.

Is it easy to tell when a Markov chain is reversible? For discrete state space Markov chains,
it is simple. Let p(z) = P(X = z) if X ~ v, and let m(x,y) = P(Xyy1 =2 | Xy = 2)
in the chain. Then the chain is reversible if and only if for all x,y € ), it holds that
p(x)m(z,y) = p(y)m(y, ).

Fact 34
A Markov chain over a discrete space is reversible with respect to v if and only if

(an Y, Q)(p(a:)m(x, y) - p(y>m(y7 .’L‘)),

where p(z) is P(X = z) for X ~ v, and m(z,y) = P(X41 =y | Xi = 2).
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Suppose for all x, y that p(x)m(x,y) = p(y)m(y, x). Let x,y € .
P(Xy =2, Xp1 =y) =P(Xy = 2)P(Xyp1 =y | Xy = 2)

= p(z)m(z,y)

= p(y)m(y, z)

=P(X; =y)P(Xpp1 =2 | Xy =y)
=P(X¢p1 =2, Xy = y).

Since P((X¢, X¢41) = (z,y)) = P((X¢41, Xt) = (z,y)) for all z and y, they must have
the same distribution, and the chain is reversible.
Now assume the chain is reversible. Then let (z,y) € 2. Then

P((XthH-l) - (x,y)) - P((Xt-i-l’Xt) = (:’E,?J)),

and as seen earlier the left hand side is p(x)m(x, y) and the right hand side p(y)m(y, ).
So the two expressions are equal.

19.2  Metropolis-Hastings

The MR?T? method combined with Hastings modification is commonly known as
Metropolis-Hastings, or MH. The idea is to not just use the target density in the acceptance
ratio, but also the density of the proposal state.

Definition 43
For a target density p and set of densities g, such that

(Vz,y € Q)(q(z,y) > 0 < q(y,z) > 0),

the Metropolis-Hastings chain is as follows.
For state X; € ), propose Y such that P(Y =y | X; = z) = ¢q(z,y). Let U be a
standard uniform independent of X; and Y. If

p(YV)g(Y, X))
Vs oX0e,,Y)

set Xt+1 = Y, otherwise Xt+1 = Xt.

Fact 35
The Metropolis-Hasting Markov chain is reversible with respect to density p.

Let = and y be distinct elements of Q. In the case x = y, then p(x)m(z,y) =

p(y)m(y,z) = p(x)m(x, z) by definition.
So suppose x # y. Then to move the state from X; = = to X; 1 = y, it is necessary
that both Y =y, and U < p(y)q(y, x)/[p(z)q(x, y)]. This occurs with probability

= ¢g(x,y) min M
m(z,y) = q(z,y) {1’ p(x)q(z,y) } .
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Similarly,
e {1 P
i) =) {1’ p(y)aly, z) } '
Suppose [p(y)q(y, x)]/[p(x)q(x,y)] > 1. Then
p(a;)m(x, y) = p(x)q(x, y)7
and
p(x)q(z,y)
p(y)q(y, )
The case where [p(y)q(y, z)]/[p(z)q(x,y)] < 1 is similar.

From our earlier fact, this means that p is the density of a stationary distribution for the
chain.

m(y,x) = p(y)q(y, x) - =p(x)q(r,y) = p(z)m(z,y).

Solving the Question of the Day

Let us apply this procedure to the question of the day. For Q = {1,2,...}, the MH
acceptance ratio is

p(y)a(y,z)  (C/y*)(y € D)0,

=2}

[(z=y—1)+04l(z =y + 1)]
0.6I(y =2 — 1)+ 0.41(y = = + 1)]
r=y—1)4+04l(zr =y +1)]
r=y+1)+04(z =y — 1)]

p(@)q(z,y)  (C/a?)l(z € Q)
~ 2?I(y € 2)[0.61(
— y2I(z € Q)[0.61(

(=2}

22
= ?]I(x, yeQ)6/)(zx=y—1)+ (4/6)[(z =y + 1)].

So one step in the Markov chain can be setup as follows.

Algorithm 7
step_qotd_mh(x, m, u)

1. Lety <~z +m

2. Tu < (22/(y + 1y = 0)2)((3/2)y = 2+ 1) + (4/6)I(y = = — 1) (I(y = 1)

return y.

3. Else return z.

19.3 Metropolis Hastings in general state spaces

When dealing with general state spaces, the acceptance ratio becomes what is known as a
Radon-Nikodym derivative, which is a generalization of the concept of a derivative.
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Definition 44
For two measures v and v such that for all measurable A, 14 (A) > 0 implies v5(A) > 0,
the Radon-Nikodym derivative is a function f = dv; /v, such that for all measurable

B,
/ 3—2 dl/g / dl/1 = Vl(B).

To convert a general Markov chain to a reversible chain with stationary distribution
m, consider the current state x and the proposed state y. Then the density of (X, X¢11)
when X; ~ 7 at (x,y) divided by the density of (Xy, X;+1) at (y, x) is the acceptance
ratio in Metropolis-Hastings.

Definition 45

Suppose there is a function ¢ : 22 — [0, 00) such that for every 2 € €, the random
variable Y, has density fy, (y) = q(z,y) and p is the density of the target distribution.
Then {X;} is the Metropolis Hastings Markov chain if it works as follows. First, draw
Y, given X; = z. Second, draw U a standard uniform independent of all other random
variables. Third, if

p(Y)q(Yz, )
= p(a)g(z,Ye)

then set X¢y1 = Y,. Otherwise, X; 11 = X;.

19.4 Simulation of Metropolis-Hastings in R

First load in the t idyverse and knitr packages.

library (tidyverse)
library (knitr)

One way to set up the step is to define a separate function for the probability of
(Xt, Xt41) = (a,b). The input pr (stands for probability right) is P(M = 1).

step_gotd_mhl <- function(x, m, u, pr) {

y <— X + m
r <- function(a, b, pr)

return(l / (a + (a == 0))"2 x (a !'= 0) =

(((1 = pr) » (b <= a) + pr » (b > a))))

if (u < r(y, x, pr) / r(x, y, pr))

return (y)
else

return (x)

164 253



Mark Huber | Monte Carlo Methods

Now create the chain and take steps.

chain_gotd_mhl <- function(steps, prob_right) {
burnin <- steps
datasteps <- steps
x <— 1
ml <- 2 x (runif (burnin) < prob_right) - 1
ul <- runif (burnin)
for (i in 1l:burnin) {
x <- step_gotd_mhl (x, ml[i], ul[i], prob_right)
}
res <- rep(0, datasteps)
m2 <- 2 % (runif (datasteps) < prob_right) - 1
u2 <- runif (datasteps)
for (i in 1l:datasteps) {
x <- step_gotd_mhl(x, m2[i], u2[i], prob_right)
res[i] <- x
}

return (res)

resl <- chain_gotd_mhl (10°5, 0.2)
ggplot () +
geom_bar (aes (resl)) +
theme_minimal ()
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Note that changing the proposal move does not change the output!

res2 <- chain_gotd _mhl (1075, 0.1)
ggplot () +

geom_bar (aes (resz2)) +
theme_minimal ()
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However, the acceptance rates might change.
tibble (
"0.2 right acc rate " = mean(diff (resl) != 0),
"0.1 right acc rate" = mean(diff (res2) != 0)
) > kable ()
0.2 right acc rate | o.1 right acc rate
0.2744627 0.201122
Problems

19.1: Consider the unnormalized density f(i) = [1/Vi]I(i € {1,2,...}.
a) Write R code for a single update in a MR%2T? Markov chain with proposed move
P(M =1) =08, P(M = —1) = 0.2

that has f as the stationary distribution.

b) Use your code, with 10* steps in the Markov chain and 10 replications to
estimate E[X] for X ~ f.
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Chapter 20

Pricing derivatives

Question of the Day

Say that stock price has a 40% chance of rising 10% and a 60% of falling 5% each day.
A particular Asian option is bought at time ¢ = 0. At time ¢ = 5, it has value equal to
max((S1 + S2 + S5+ Sy + S5)/5 — 110, 0). What price should an investor pay for this
option?

Summary
« A derivative is a financial security whose value is a function of some other asset.

« A martingale is a stochastic process {S;} such that E[S; | S;] = S, forallr < ¢.

« A probability distribution P* is a (risk neutral equivalent martingale measure) if
under P*, {S;} is a martingale.

« The Fundamental Theorem of Asset Pricing says that if P* is a risk neutral
equivalent martingale measure for {S;}, then for any derivative, f(S;) is also a risk
neutral equivalent martingale measure.

« This allows us to use Monte Carlo to price derivatives: first create a risk neutral
equivalent martingale measure, then simulate f(S;) under that measure and average
to estimate the price of the derivative.

A share of stock, a truck, a house, a card collection, these are all things that have some
value. That makes these things assets. If the asset is easy to trade among different people,
the asset becomes a financial instrument. These financial instruments are often abstract
entities, such as the contractual ability to buy another asset at a certain price.

Securities are financial instruments that are fungible, meaning that owning one asset is
equivalent to owning another copy of the asset. For instance, a share of stock is fungible
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because it does not matter which share of a class of stock that you each. Each share within
that class of stock has the same voting rights and so on.

In the question of the day, each share of stock that can be purchased is a security, as
they are fungible. For securities, the total value will just be the price per share times the
number of shares bought.

That brings us to a derivative.

Definition 46
A derivative is a financial security whose value is a function of some other asset.

The Asian option mentioned in the Question of the Day is such a derivative. Its value at
time 5 is a function of the price of the stock over times from o to 5:

A5:max<51+52+”'+s5—110,0).

5

It is called an option because the purchaser of the derivative has the option to either exercise
the option at time 5, in which case the owner receives (S; + - -+ + S5)/5 — 110. Or the
owner might choose to not exercise the option, and receives o dollars. That means the
value of the option at time 5 is the larger of these two values (assuming the owner makes
the decision to maximize the value!)

Various types of options, European, American, Asian, are named after geographical
locations. The Asian type of option, also known as an average option bases its value on the
average value of a security over some time period.

20.1 European options

To understand how to price the option, consider a simpler example. Suppose the current
stock price is 100 dollars, and as before there is a 40% chance of the stock going up 10%, and
a 60% chance that it goes down 10%. Moreover, there is a European option that allows the
owner the option to buy the stock for $105 after 1 day. What should someone be willing to
pay for this option?

Well, if the stock goes up, it is worth $110, so if bought for $105, the owner could
immediately sell it for a gain of $5. However, if the stock went down to $95, then the owner
would just tear up the option. So the overall value of the option as time 1 is

D1 = max(S; — 105,0) = (S — 105)*,

where S is the price of the stock after one day and the superscript + just means take the
larger of the value and o.

A common mistake is to say that the value of the option at time 0 ( Dy ) should be the
expected value of D;. But that ignores the risk (or lack of risk) inherent in the option.

A better way of thinking about this is the idea of an Arrow Security.
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Definition 47
Suppose exactly one of the events {a1, ..., a,} must be true. Then an arrow security
for outcome 7 has value 1 if q; is true, and o otherwise.

An arrow security is the financial equivalent of the indicator function. For the stock
example, suppose a,, = (S1 = 110) and ag = (S1 = 95). Then in the model either a,, or
ag (but not both) must be true.

Moreover, the option payoff can be replicated by buying 5 shares of A, since if the stock
goes up, the value of the option is 5. The stock can be replicated by buying 110 shares of
A, and 95 shares of Ag. Finally, if someone owns one share of A, and one share of A,
after one day they are guaranteed to have one dollar.

Note that all of this is complicated by the existence of a risk-free interest rate, which is a
rate of interest given by a money market account. For simplicity, this will be ignored in this
chapter, but for those with more advanced finance knowledge, rest assured that the ideas in
this section can be extended easily to incorporate interest rates.

So that gives the following equations:
Dy = 5price(Ay)
So = 110 price(A,) + 95 price(Aq)
1 = price(A,) + price(Aq).

Because the A; assets return either o or 1 dollars, the price should not be less than o or
greater than 1. Exactly one is true, and they add up to 1. Therefore, the prices of the A;
assets form probabilities!

Let p*(u) = price(A,) and p*(d) = price(Ay). Then

So = 110p* (u) + 90p*(d) = E.(S1).
The right hand side is the expected value of S; using the star probabilities. Similarly,
Dy = 5p*(u) + 0p*(d) = E.(D1)

is the expected value of D; under the star probabilities.

Solving
110p™ (u) + 95p* (d) = 100
pr(u) +p(d) =1
gives
1 2
pi(u) =3, p7(d) = 3

Note that this is different from p(u) = 0.4 and p(d) = 0.6, the probabilities in the model.
In general the star probabilities are different from the model probabilities. That is why it is
important to have the star notation, it indicates that the model probabilities are not being
used.
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20.2 Arbitrage and martingales

It was assumed in this calculation that no one would be willing to pay more than $1 or
less than $o for an A; asset, because otherwise they would be guaranteed to make or lose
money. This principle that prices should be set so that there is no way to make money
with probability 1 is called the no arbitrage principle.

Definition 48
A set of prices has arbitrage if there is a way to buy and sell assets such that the
probability of making a profit greater than o equals 1.

When a set of prices is arbitrage free, the star probabilities can be used to make E, (5] |
So) = Sp. This extends to any time greater than o, making the stochastic process a
martingale.

Definition 49
Assuming the appropriate conditional expectations exists, if

(Vt)(E[St | So,- ., St—1] = Se—1),

call {S;} a martingale.

Induction can then be used to show the following.

Fact 36
For a martingale where Sy is constant, E[S;] = S for all ¢ > 0.

Definition 50
If using probability measure P*, {S;} is a martingale, call P* a risk neutral equivalent
martingale measure.

20.3 The Fundamental Theorem of Asset Pricing

The Fundamental Theorem of Asset Pricing states that in a price system with no arbitrage,
the star probabilities can be used to price any derivative of an asset.

Theorem 9
The Fundamental Theorem of Asset Pricing

Given a set of prices with no arbitrage, suppose that {,S; } is the price of an asset at time
t, and P* is the risk neutral equivalent martingale measure. Then for any computable
function f, {D; = f(So, S1,...,St)} is also a martingale under P*.

How is this theorem used in practice?
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1) For the base asset {.S;}, find the risk neutral equivalent martingale measure P*.

2) Use Dy = E[D; | Dy] to find the value of Dy.
Sometimes this first step can be done analytically. For instance, for D; = (S; — 105)™,
Dy =E,.[D1]=(1/3)5+(2/3)0 =5/3.

That is, the European option should be priced at about | $1.67|. (As is common in this

context, the price of the option was rounded up to the nearest penny.)

20.4 Pricing Asian options in R

The Asian option in the Question of the Day is more complex. Because the price involves
S1, 52, 53,54, S5, there are 2° = 32 possible outcomes to consider. Simple modifications
to the model could make this even harder to calculate analytically.

Therefore, Monte Carlo is often used to price these types of options. To price the option,
first, the set of stock prices must be simulated. The model where a stock either goes up or
down by the same amount with the same prices is called the binomial model.

Let u hold one factor that the stock can change by, d the other factor it can change by
(typically u > d), s_0 the starting price, p the two dimensional vector (p(u), p(d)), and t
the number of steps to take in the model. The cumulative product function (cumprod)
can be used to take the products of the ups and downs.

rbinomialmodel <- function(t, u, d, p, 1) {
changes <- (runif(t) < pl[l])
return( s_0 «*
c(l, cumprod(rep(u, t) changes) =*
cumprod (rep(d, t) (1 - changes))) )

Several runs of the stock price under the true model then looks like this.

stock_price <- replicate (5, rbinomialmodel (10, 1.1, 0.95, 0.4,
as_tibble () |>

mutate ( 0:10) |>
pivot_longer (V1:V5, "run", "price")
stock_price |>
ggplot () +
geom_line (aes ( t, price, run)) +

theme _minimal ()
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The value of the Asian option is the average of all values but the first minus the strike
price 110, unless this is smaller than o, in which case it is o.

asian_value <- function(s, K) {
max (mean(s[-1]) - K, 0)

For the data above:

stock_price |>
group_by (run) |[|>
summarize (asian_value (price, 110)) |[>

kable ()
run | asian_value(price, 110)
Vi 0.000000
Va2 2.220569
V3 0.000000
V4 0.000000
Vs 0.000000

To estimate the price, run this many times using the p* values.
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trials <- 100000
res <- replicate(trials,
asian_value (rbinomialmodel (5, 1.1, 0.95, 1 /
tibble (
mean (res),
sd(res) / sqgrt(length (res))
) |> kable ()

est_mean | est_err
1.24623 | 0.01141

Using this many trials, the estimated mean was | 1.234 £ 0.012 |
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Pricing derivatives with control variates

Question of the day

Say that stock price has a 40% chance of rising 10% and a 60% of falling 5% each day. A
particular Asian option is bought at time ¢ = 0. At time ¢ = 5, it has value equal to
max((S1 + Sz + S5+ Sy + S5)/5 — 110, 0). Use a control variate to estimate what price
should an investor pay for this option while keeping the variance as small as possible.

Summary

+ Suppose that random variable X has density fx and the goal is to estimate the mean
of h(X). Suppose instead it is possible to draw Y from density fy . Then

. fX(Y)]
fy(Y)

is importance sampling, and this can be used for financial Monte Carlo in the
same way as for other Monte Carlo methods.

E[h(X)] = E [h(Y)

« A control variate is a random variable 7" with known mean that is correlated with
the random variable W being used for our simulations. Then use

Cov(W,T)
V(T)
as an unbiased estimate of the target value. Note
V(f(W,T)) = (1 — Cor(W,T)*)V(W),

so this estimate can have a much smaller variance than the original W.

fWT) =W - (T —E[T))

Suppose a system of prices does not have arbitrage. For p* the risk neutral equivalent
martingale measure probabilities, the Fundamental Theorem of Asset Pricing says that for
all t > 0 it holds that E.[f(So, ..., St)] = f(So) for all computable functions f.

This statement can be used with E.[S;] = S to find the probabilities p*, but then finding
E(f(So,...,St)) involves an integration whose calculation typically grows exponentially
fastin ¢.
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Definition 51

A stock price S; follows a binomial model if there are positive constants v and d, and a
probability p such that at each step, the stock has a p chance of S;11 = uS;,andal —p
chance of S = dS;.

In the Question of the Day, © = 1.1 and d = 0.95. Knowing that
100 = p*(u) - 110 + p*(d) - 95

and p*(u) 4+ p*(d) = 1 gives the star probabilities as p*(u) = 1/3 and p*(d) = 2/3. This
gives the probabilities, now the question is how to find the mean of the derivative price.

Fact 37
For the binomial model,

aslongasd <1 < u.

If both d and u are greater (or both smaller) than 1, then the stock is guaranteed to make
(lose) money which means arbitrage exists!

Proof. Let p* = p*(u) be the probability that the stock goes up, then 1 —p* is the probability
it goes down. Hence,
So = uSop* + dSo(1 — p),

and canceling Sy and solving gives the result.
O

Once the risk neutral measure is found, Monte Carlo can be used to provide an estimate
for the mean by drawing samples from the random variable. For W7y, ..., W), iid W with
finite standard deviation,

SD(WW') = SD(W) /v,

so if SD(W) is large, it can take a long time to get the standard deviation below a certain
level.

21.1  Changing the random variable

In the case of the Asian option in the Question of Day, most of the time the option will not
be exercised. With the binomial model with v = 1.1 and d = 0.95, the Asian option will
be exercised only about 22% of the time.

If p* were higher, then the option would be exercised more often. For instance, if p = 0.5,
then the option is exercised about 58% of the time. One could create a new random variable
Y with this simulation instead of X
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However, in general f(Y") will be different from f(X), and E(f(Y)) # E(f(X). How
to convert?

The answer lies in a form of importance sampling. The Y simulation is coming from
a different density than the X simulation that preceded it. To compensate for this fact,
multiply by the proper density of the X density versus the Y density.

Theorem 10
Importance sampling with random variables

Suppose X and Y have densities fx and fy with respect to measure v, and (fx(s) >
0) — (fy(s) > 0). Then for a computable function h,

E[h(X)] = E [h(Y) ;;‘ g; ]

Proof. From the way expectations of functions of a random variable are defined:

x(Y)] _ Ix(y) »
5 [ | = /My Oy YW

/ h(y)fx(y) dv
fy (y)>

oo
E[h

Importance sampling for the binomial model
In the binomial model, the underlying random choices are for each time step did the stock
multiply by u or did it multiply by d. Bernoulli random variables can be used at each step
to determine if the stock used u as the factor.

For instance, if X = (X7, X2, X3) = (1, 1,0), that means that S; = uSy, So = uSi,
and S3 = dSs. The density of X at (1,1,0) is px - px - (1 — px ). That makes the ratio of
the density of X using px and Y using py at (1,1,0)

px -px - (1 —px)
py Py (1—py)

)

or (px /py)?*[(1 = px)/(1 = py)]".
More generally, if the stock goes up > Y; times, then the ratio is

- () ()
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21.2  Control Variates

Another way to reduce variance is to work with a random variable that is known to be
positively (or negatively) correlated with the target variable.

Suppose that a is our target for estimation, and @ is an estimate for a. Now suppose that
b has expected value b. Then for any real constant c,

e =a+c(b—b)

will have mean also equal to a. The variance of the new estimate will be (by the sum of
variance rule)

V(ae) = V(a) + 2V(b) + 2¢ Cov(a, b).

This is quadratic in c. To make this as small as possible, choose

Under these conditions:
V(ae) = (1 — Cor(a, b)?)V(a),

so the more correlated the control variate is with the original variable, the better.
This can be summarized as follows.

Definition 52
Suppose W has mean a and 7" with known mean is correlated with . Then 7T is a
control variate,

_ Cov(W,T)

(T — E(T))7
also has mean a, and

V(f(W,T)) = (1 = Cor(W,T)*)V(W).

A control variate for Asian options

For instance, in the Asian option, the final value of the stock can be used as a control
variate. When this final value is higher, the value of the Asian option tends to be higher as
well. Since it is evaluated under the risk neutral measure, it has expected value equal to Sp.
The variance of this random variable can be computed analytically, or simply estimated.

21.3 Reducing variance in R

Using importance sampling

To utilize these ideas in R, it is necessary to keep track of how many times the stock went
up or down in a particular run.
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raopt <- function(t, u, d, p_x, p_y, s_0, K) {
y <— (runif(t) < p_y)
n_up <- sum(y)
ratio <- (p_x / p_y) (n_up) =*
((1 - p_x) / (1L - p_y)) " (t - n_up)
S <- s_0 % cumprod(u’y) * cumprod(d”(l - y))
return (max (mean(s) — K, 0) * ratio)

Now replicate to get the answer using the risk neutral martingale measure (so px =
Py = 1 / 3)

trials <- 1000
res <- replicate(trials,

raopt (5, 1.1, 0.95, 1 / 3, 1 / 3, 100,
110))
tibble (
mean (res),
sd(res) / sqgrt(length (res))
) |> kable ()
est_mean est_err

1.167809 | 0.111179
Now change py to be 1/2.

trials <— 1000
res <- replicate(trials,
raopt (5, 1.1, 0.95, 1/ 3, 1 / 2, 100,
110))

tibble (

mean (res),

sd(res) / sqgrt(length (res))
) |> kable ()

est_ mean est _err

1.226008 | 0.0560491

Note that the estimated error is close to half what it was in the first simulation! Can we
do better?

trials <- 1000
res <- replicate(trials,
raopt (5, 1.1, 0.95, 1 / 3, 0.7, 100,
110))
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tibble (
mean (res),
sd(res) / sqgrt (length (res))
) |> kable ()
est_ mean est_err

1.208531 | 0.0440722
Can this be pushed further?

trials <— 1000
res <- replicate(trials,

raopt (5, 1.1, 0.95, 1 / 3, 0.8, 100,
110))
tibble (
mean (res),
sd(res) / sqgrt(length (res))
) |> kable ()
est_mean est_err

1.264674 | 0.0603751
So at a certain point, this change does not improve things.
Then to get the best accuracy, use our choice of py = 0.7 with many samples.

trials <— 100000
res <- replicate(trials,

raopt (5, 1.1, 0.95, 1 / 3, 0.7, 100,
110))
tibble (
mean (res),
sd(res) / sqgrt(length(res))
) |> kable ()

est_ mean est_err
1.253841 | 0.004555

Control Variates in R

Now consider the control variate problem. First, consider returning both the Asian option
price and the control variate value.

raopt_cv <- function(t, u, d, p_x, p_y, s_0, K) {
y <— (runif (t) < p_y)
n_up <- sum(y)
ratio <- (p_x / p_y) (n_up) =
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((1 —p_x) / (1 - p_y)) (t - n_up)
s <- s_0 % cumprod(u’y) * cumprod(d” (1l - y))
return (c (max (mean(s) - K, 0) * ratio, last(s)))

Use 10000 samples to estimate the covariance between the two, and the variance of the
control variate.
res_cv <—- replicate (10000, raopt_cv(5, 1.1, 0.95, 1 / 3,
1/ 3, 100, 110))
cov(res_cv[1l, 1, res_cv[2, 1)
## [1] 42.37929

var (res_cvi[2, 1)

## [1] 264.5681

So the value of ¢ to use is —42.37/264.56.

c <— —-cov(res_cv[l, 1, res_cv[2, 1) / var(res_cvI[2, ])
raopt_cv2 <- function(t, u, d, p_x, p_y, s_0, K, 0) {
y <— (runif (t) < p_y)

n_up <- sum(y)
ratio <- (p_x / p_y)  (n_up) =*
((1 - p_x) / (1 - p_y)) (t - n_up)
S <- s_0 % cumprod(u’y) * cumprod(d” (1l - y))
return (max (mean(s) - K, 0) % ratio + ¢ * (last(s) - s_0))

Note that once ¢ has been estimated, the data to price the derivative must be replicated
independently! If the same data is used, then ¢ and the estimated value of the control
variate are not independent, and all our calculations fall apart.

trials <- 100000
res_cvl <- replicate(trials,
raopt_cv2(5, 1.1, 0.95, 1 / 3, 1 / 3,
100, 110, c¢))
res_cv2 <- replicate(trials,
raopt_cv2 (5, 1.1, 0.95, 1 / 3, 1 / 3,
100, 110, 0))
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tibble (
mean (res_cv2),
sd(res_cv2) / sqrt(length(res_cv2)),
mean (res_cvl),
sd(res_cvl) / sqgrt(length (res_cvl))
) |> kable()
est_mean est_err | est_mean_cv | est_err_cv
1.257183 | 0.0115098 1.254005 | 0.0086079

Combining

A natural question to ask is: can the importance sampling and control variate methods be

combined?

res_cv_is <-

replicate (10000,

raopt_cv (5, 1.1,

c_is <- -cov(res_cv_is[1l, 1],

var (res_cv_1is[2,

trials <— 100000
res_cv3 <- replicate(trials,

tibble (

) | > kable ()

raopt_cv2 (5,

est_mean_cv_is

est_err cv_is

1.274732

0.0045371

This is pretty mucl

0.95, 1/ 3, 0.7, 100,
res_cv_is[2, 1) /

1)

1.1, 0.95, 1/ 3, 0.7,

mean (res_cv3),
sd(res_cv3)

110))

/ sqgrt (length (res_cv3))

100,

h the benefit that came from importance sampling alone. The reason

for this is that the importance sampling made the dependence on the final stock price
much smaller since higher stock values were given smaller weights in the ratio. So really
importance sampling alone gives the best bang for the buck here.

Problems

21.1: Consider the problem of estimating

1
1
| i
-1 1+JJ2

a) Note that I = E((7/2)I(|T| < 1)), where T is a standard Cauchy random
variable. Find V(I(|T| < 1)) in terms of I.
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b) Suppose U ~ Unif([—1, 1]). Find a function ¢(U) such that the mean of ¢(U)
equals I.

¢) What is the variance of £(U)?

d) Assuming it is equally easy to generate a Cauchy or a Uniform, which would
you use to estimate [ with Monte Carlo?

Solution

a) Since (7/2)I(|T| < 1) € {0, 1}, the variance is just the product of (7/2)? times
the probability the expression inside the indicator is true times the probability
it is not true. (For B ~ Bern(p), V(B) = p(1 —p).) So this variance is I (1 —I),

or about | (7/4)%(1/2)(1 — 1/2) ~ 2.467

b) Using the importance sampling theorem,

2
(U € [—1,1]>1/(1172U ) - 1+2U2

is the function.

¢) To find the variance, the second moment is needed:

IE[E(U)Q]:/R( 2 >Q;H(ue[—1,1])du

14+ u?

~ 1+ D -0,

d) Use the approach, since the variance is slightly smaller.

21.2: Consider the problem of estimating E(U?).

a) What is the variance of U??

b) Suppose you can generate B ~ Beta(1,2). Find a function of B such that the
mean is E(U?).

¢) Find the variance of your function of B.

d) Assuming it is equally easy to generate a uniform or a beta random variable,
which should you use to estimate E(U?)?
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Brownian motion

Question of the day

A stock price is modeled using Geometric Brownian motion with Sy, 100, 4 = 0.05,0 =
0.1). If an Asian option pays

((S1 + Sz + S3)/3 —110)*

at time 3, what should the price of the option be at time 0?

Summary

» Standard Brownian motion is a stochastic process that is 0 at time 0, has indepen-
dent normal increments, and is continuous with probability 1.

« Geometric Brownian motion is a function of a standard Brownian motion {W,}

that is
o2
Sy = Spexp ((,u — 2> t+ O'Wt>

given parameters (So, i, ).

The binomial model is a discrete time model: at each time step the stock moves from
value S;_; to either Sy = S;_ju or S; = Sy_1d. Suppose instead a continuous time model
is needed.

In this situation, the common way to model a stock price is as a function of Brownian
motion. Brownian motion can be viewed as the limit of simple symmetric random walk on
the integers. It is defined by four properties.

Definition 53

The stochastic process {W} }+>0 is a Weiner Process or standard Brownian Motion
if it has the following four properties.

1) Standardized Wy = 0.
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2) Independent increments For 0 < s1 < t1 < s3 < ta,, Wy, — Wy, is independent
of Wt2 - W52 .

3) Normal increments For 51 < t1, Wy, — Wy, ~ N(0,t1 — s1).

4) Continuous W, is continuous with probability 1.

4
3
2 run
= wl
e — w2
1
w3
o &
-1
0 1 2 3 4
X

The easiest method of simulating Brownian motion at a fixed set of times is forward
simulation.

Suppose you wish to simulate at times ¢1 < t < ..., %. Start with W} equal o. Order
your target times from smallest to largest. For your smallest time ¢1, W;, — Wy ~ N(0, ¢1).
So set Wy, = Wy + Z1+/t1 where Z; is a standard normal. Then set Wy, = Wy, +

Zor/tas — 11, and so on.

22.1  Geometric Brownian Motion

The mathematical model of Brownian motion was originally proposed by Thiele in 1880
and independently by Bachelier in 1900. In these early models, Brownian motion was
directly taken as a model of the stock price.

Unfortunately, this missed an important idea: the small motions of stocks tend to be
proportional to the price, not additive. This can be handled with Geometric Brownian Motion.
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Definition 54
Let {W;} be standard Brownian motion. For constants Sy, 1, and o, the process

0.2
Sy = Sp exp ((u - ?) t—|—0Wt)

is geometric Brownian motion (GBM) with initial value Sy, growth rate 11, and variance
(aka volatility) o2.

Let h be a small positive number close to o, and then
Sein _ Soexp((p — */2)(t + h) + oWips)

S, Soexp((p — 02/2)(t) + cWy)
= exp(hp — ho®/2) exp(o(Wisp — Wi)).

Then

E {Sgh} = exp(hp — ho? /2)Elexp(o(Wyyn — W)

Since for N ~ N(0,v), E(exp(ocN)) = exp(c?v/2),,

E [Sgrh} = exp(hp — ho?/2) exp(ho?/2) = exp(hp) ~ 1 + ph.
¢

So  represents the average growth rate of the stock over a small time interval from ¢ to
t+ h.

Risk neutral equivalent martingale measure

When p = 0,
S,
E [ t+h] _1
St
and the stock price forms a martingale. This is equivalent to the risk neutral equivalent mar-

tingale measure for Geometric Brownian motion, and can then be used to price derivatives
of stocks whose price follows a geometric Brownian motion.

22.2  Solving the Question of the Day in R

Consider simulating Brownian motion at time (1.2,2.1,2.4). The di £ f command can be
used (after adding a time at o) to get the lengths of the intervals between times.

t <= c(l.2, 2.1, 2.4)
diff (c (0, t))

## [1] 1.2 0.9 0.3
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Taking the square root and multiplying by standard normals gives normals whose
variances equal the width of the interval.

dw <- rnorm(3) x sqrt(diff(c(0, t)))
dw

## [1] -0.7606729 0.9069491 -0.9961706

Finally use the cumsum command to add up the first 1, the first 2, and the first 3 of this
vector. That will be the Brownian motion.

cumsum (dw)

## [1] -0.7606729 0.1462762 -0.8498944

Next consider simulating geometric Brownian motion for a given set of times, (S, yt, o)
values. Begin by generating the Brownian motion using cumsum and forward simulation.
Remember to multiply a normal by the square root of the length of the interval in order to
get a difference that is normal with variance equal to the length of the interval.

rgbm <- function(times, s_0, mu, sigma
w <— cumsum( sqgrt( diff( c(0, times
rnorm( length( times

return(s_0 » exp((mu - sigma”2 / 2

t - — —~

)
)

imes + sigma * w))

For example, to get the stock prices at times 1, 2, and 3 for a GBM stock starting at value
$100 with 4 = 0.05 and 0 = 1:

rgbm(c (1, 2, 3), 100, 0.05, 0.1)

## [1] 97.86084 93.43556 95.73693

Here is a more detailed plot of GBM with these parameters.
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150

100 M

run
;' wil
8 — w2
w3
50

0 1 2 3 4
X

The Fundamental Theorem of Asset Pricing says that under the risk neutral martingale
equivalent measure, the price of any asset is a martingale. Using u* = 0 for Geometric
Brownian motion gives the values of the stock price used in finding the Asian option.

n <- 1075
mu_star = 0
res <-
replicate (n, max(mean (rgbm(c(l1, 2, 3), 100, mu_star, 0.1) -
110), 0))
tibble (
mean (res),
sd(res) / sqgrt (length (res))
) |> kable()
est_ mean est err

1.665026 | 0.0146559

Adding a control variate

A control variate can be used to lower the variance of the result. A simple control variate
is 53.
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asian_option_cv <- function(times, s_0, mu, sigma, K) {
s <- rgbm(times, s_0, mu, sigma)
return (c (max (mean(s) - K, 0), last(s)))

Get the data
n <- 1075
res_cv <- replicate(n, asian_option_cv(c(l, 2, 3), 100, O,
0.1, 110))
Now see how correlated the Asian option is with the final stock price.
cor (res_cv[1l, 1, res_cv[2, 1)
## [1] 0.6706318

Note that this control variate is highly correlated with the Asian option value. So it can
be used to reduce the variance of our estimate.

c <— —-cov(res_cv[l, 1, res_cv[2, 1) / var(res_cvI[2, ])

tibble (
mean (res_cv[1l, 1),
sd(res_cv([1l, 1) / sqgrt(length(res_cv[1l, 1)

4

)

mean (res_cv[l, ] + ¢ * (res_cvI[2, ] - 100)),

sd(res_cv[l, 1 + ¢ * (res_cv[2, ] - 100)) /

sgrt (length (res_cvi[2, 1))
) |> kable()

est_mean est_err | est_mean_cv | est_err_cv
1.697123 | 0.0150075 1.708456 | 0.0111324
Note that there was a substantial reduction in error.

An even better control variate is (S3 — 110)™, this is the value of a European call option
at time 3 with strike price 110.

cor(res_cv[l, ], pmax(res_cv([2, ] - 110, 0))

## [1] 0.8752982

Finding the mean of this is a bit more tricky. If 7 is a standard normal, then
(S3 —110)" ~ (100 exp(—(0.12/2)(3) + (0.1)(v/3)Z) — 110)™*,

so the mean can be estimated as follows.
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est_cv <- pmax ((100 % exp(—-(0.17°2 / 2)
rnorm(10°7)) -

tibble (
mean (est_cv),
sd(est_cv)
) |> kable()
est_mean est_err
3.316411 | 0.0025239

cv2 <- pmax(res_cv[2, ] -
c2 <- —cov(cv2,

res_cvI[1l, 1)

The resulting estimate is

n <- length(res_cv[1l, 1)

110,

0)

/ var (cv2)

110),

/ sqgrt (length (est_cv))

* 3 4+ (0.

1) * sqgrt(3)
0)

tibble (
mean (res_cv([1l, 1),
sd(res_cv[1l, 1) / sqgrt(n),
mean (res_cv([1l, ] + ¢ * (res_cv[2, ] - 100)),
sd(res_cv[l, ] + ¢ * (res_cv[2, - 100)) /
sgrt (n),
mean (res_cv[l, ] + c2 * (cv2 - 3.316256)),
sd(res_cv[l, 1 4+ c2 x (cv2 - 3.316256)) /
sgrt (n),
) |> kable()
est_mean est_err | est mean cv | est_err cv | est mean cvz | est_err cv2
1.697123 | 0.0150075 1.708456 | 0.0111324 1.702204 0.0072574

As the correlation is higher between this new control variate and the Asian option value

than the old control variate, the variance is even smaller.
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Chapter 23
Simulating solutions to Stochastic
Differential Equations

Question of the day

What is the best way to simulate a draw from the solution to a Stochastic Differential
Equation?

Summary

+ A Stochastic Differential Equation involves differentials of time and standard
Brownian Motion.

+ The Euler-Maruyama method can be used to sample from an SDE that has the
form dX; = a(t, X;) dt + b(t, X;) dWy, by using

Xeon=X,+h-alt, X)) +Vhz,
where Z; is a standard normal random variable.

« More sophisticated methods exist that converge faster to the true solution, or in
some cases, draw exactly from the SDE.

First consider the notion of a differential. A differential represents a small change in
a variable (or stochastic process.) So dy represents a small change in y, dt represents a
small change in ¢, and dW; represents a small change in the value of a standard Brownian
motion {W;}.
A differential equation (DE) is an equation that involves one or more differentials. For
instance, suppose that
dy =t dt.

This equation says that the variables y and ¢ are connected in some way, that a small
change in the value of ¢ will lead to a change in the value of y that is ¢ times the small
change in the value of ¢.
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To put some numbers on it, if t = 4 and dt = 0.0001, then dy ~ 0.0004. This is not
exact, because 0.0001 is not infinitely small, but it is a good first approximation.

Euler suggested and analyzed the following simple numerical method for approximation
the solutions to a given DE. The input to the function is a value h that is being used as a
stand in for dt. Today this method bears his name.

Definition 55
Consider the differential equation dy = f(¢,y) dt with boundary condition y(0) = yo.
Let A~ > 0 and n be a positive integer. Define

~

Yo = Zo
and for every i € (1,2,...,n) in order,
Yin = Y—1yn + (G = D, Gi—1yn) - h-

Call the {g;} the Euler’s method approximation of the value of y.

The time here starts at o for convenience, but by shifting this method it is possible to
start at an arbitrary time ¢.

23.1  The Euler-Maruyama method

A stochastic differential equation, or SDE, involves not only deterministic changes in a
variable, but random changes as well. Suppose that {WW;} is standard Brownian motion
(also known as a Weiner process after Norbert Weiner). Roughly speaking, the change in
{W:} over some small time interval is

th == Wt+dt - Wt ~ N(O, dt)

So the variance of the differential change is dt, and the mean of the change is o. It turns
out that because differential change in time is small, any distribution with mean o and
variance dt can be used. For instance,

AWy = Wigar — Wy ~ Unif({=Vdt, Vdt}).

works. However, in the description here the normal distribution will be used because it
converges exactly without the need to invoke the Central Limit Theorem.

An SDE is similar to a DE, exempt it is allowed to include these stochastic differentials
dW,. If a stock price was growing exponentially and deterministically, then it obeys the
DE,

dSt = St,u dt.

In this equation p is called the rate of growth. If S; > 0 and px > 0, then dS; > 0 so the
stock price is growing. If S; > 0 and p < 0 then dS; < 0 so the stock price is decreasing.
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In an SDE, the differential of W, is thrown in to spice things up and add a bit of random-
ness to the expression. In particular, the SDE for geometric Brownian motion is

dSt == St(u dt +o th)

The value of the constant o controls how much the randomness affects the equation.
When o = 0, it returns to the usual exponential growth or decline. But as o increases, the
shocks introduced by the W; can overwhelm the output.

This makes the solution to the SDE itself a random variable! It is a special type of random
variable which is a random function of time.

150
100
run
%' —— sigma=0
) — sigma=0.1
— sigma=1
50
0
0 1 2 3 4
X
Note that for ¢ = 1 even though on average the stock price is growing, it is also

converging to o! That’s because if the log of the stock price looks like:
In(S;) = n(So) + (1 — 0%/2)t + oW,

So if 02/2 > y, then on average the log of the stock price is going towards negative
infinity, which means the stock price is going to zero.

Geometric Brownian motion is a special case of a diffusion, and SDE with a dt and a W,
term.
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Definition 56
If the stochastic process { X} satisfies

dXt B a(t, Xt) dt aF b(t, Xt) th,

it is a diffusion with drift a(x, t) and volatility b(z, t).

23.2  Euler-Maruyama

A handful of SDE examples such as the one for geometric Brownian motion can be solved
exactly, but most cannot. For these, it is still possible to conduct simulations. An approxi-
mate simulation method utilizes an approach similar to the Euler method. It was introduced

by Maruyama in 1955 (Maruyama 1955).

Definition 57
Consider the diffusion

dSt = CL(t, St) dt + b(t, St) th,

with known start value Sp. Then the Euler-Maruyama method proceeds as follows.
Let A > 0 and n be a positive integer.
Set Sy = Sp. For every i from 1 to n in order,

~

Sin = Si_nyn +a ((i —1)h, S'(i_l)h) h4b ((i ~ 1)k, S(i_l)h) - Z;-vh,

where {Z1, ..., Z,} are iid standard normal random variables.

Some notes.

+ The Euler-Maruyama algorithm is a Monte Carlo algorithm, since the output depends
on the draws of the Z;.

« Running the algorithm multiple times can give an idea of the range of functions
produced.

To this last point, consider a particular diffusion called the Ornstein-Uhlenbeck process,

used to model interest rates.
A diffusion is an Ornstein-Uhlenbeck process if it has the form

dX; = —0 - (X, — p) dt + o dW;

for 1 a constant and 6, o positive constants.
Then three runs of Euler-Maruyama with § = 0.5, 4 = 5,0 = 1.3 is as follows.
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8
6 ‘ ‘ ! | ‘ “
i \ ‘ 11 T | , run
, ﬁ* i ' ' i == runl
§ , ’ = run2
=== run3
,
0 5 10 15 20 25
t
SDE perfect simulation

There does exist a form of acceptance rejection for certain classes of diffusions. See (Beskos
et al, 2006) for details.

Milstein’s method

The Euler-Maruyama is considered a half-order method, because the convergence to the
true answer goes as v/h. There are methods that converge faster. For instance, Milstein’s
method converges as h, making it a first-order method.

23.3 Running Euler-Maruyama in R

To run an Euler-Maruyama algorithm in R, the first thing to do is to build an a and a b
function for the drift and volatility functions respectively. For instance, for the Ornstein-
Uhlenbeck process from earlier with § = 0.5, 4 = 5,0 = 1.3:

a <- function(t, s) return(-0.5  ( s — 5 ))
b <- function(t, s) return(l.3)

Now the Euler-Maruyama method can accept these functions as inputs.

euler_maruyama <- function(x_0, t_0, t_1, h, a, b) {
t <- seq(t_0, t_1, by = h)
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n <- length(t)

hat_x <- rep(x_0,
z <— rnorm(n - 1)
sgrt_h <- sqgrt (h)
for (i in 2:n) {

n)

hat_x[i] <- hat_x[i - 1] +
a(t[i - 1], hat_x[i - 1]) = h +
]

b(t[i - 1], hat_x[1 - 1

}

return (tibble (t, hat_x))

) * z[1 - 1] % sqgrt_h

Now complete three simulations of the result for time from o to 24.

runl <- euler_maruyama (1,
run2 <- euler_maruyama (1,
run3 <- euler_maruyama (1,

r <- union_all (runl,
r |>
ggplot () +

run?)

0, 24, 0.01, a, b
0, 24, 0.01, a, b
0, 24, 0.01, a, b

|> union_all (run

) |> mutate (run =
) |> mutate (run =
) |> mutate(run =
3

)

geom_line (aes(t, hat_x, color = run), lwd = 1) +
)

theme_minimal (

7.5

2.5

0.0

run
=== runl
= run2

= run3

10 15 20 25
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Note that they tend to move towards 5 as quickly as possible, since otherwise there is
pressure from the a function to move towards 5. Consider giving it a mean of 10, and
strengthening the move towards 10:
a2 <- function(t, s) return(-2 » ( s — 10 ))

Then the plots look something like:

runl_2 <- euler_maruyama(l, 0, 24, 0.01, a2, b) |> mutate(run
run2_2 <- euler_maruyama(l, 0, 24, 0.01, a2, b) |> mutate(run

run3_2 <- euler_maruyama(l, 0, 24, 0.01, a2, b) |> mutate(run =

r2 <- union_all(runl_2, run2_2) |> union_all (run3_2)
r2 |>
ggplot () +
geom_line (aes(t, hat_x, color = run), lwd = 1) +
theme_minimal ()

12.5
10.0
7.5 run
><| == runl
E m—run2
= run3
5.0
2.5

23.4 Questions

Consider using Euler-Maruyama method to estimate Geometric Brownian Motion with
a(t,s) = (u— 0?/2)) and b(t, s) = o, with Sy = 100, & = 0.05 and o = 0.1.

a. Estimate S; using Euler-Maruyama with h = 0.1 over [0, 4]. Plot the result.
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b. Estimate S; using Euler-Maruyama with A = 0.01 over [0, 4]. Plot the result.

First set up the functions

a2 <— function(t, s) {
return (0.045)

b2 <- function(t, r) {
return(0.1)

Next set up Euler-Maruyama:

euler_maruyama <- function(x_0, t_0, t_1, h, a, b) {
t <- seq(t_0, t_1, h)
n <- length(t)
hat_x <- rep(x_0, n)
z <— rnorm(n — 1)
sgrt_h <- sqgrt (h)
for (i in 2:n) {
hat_x[i] <- hat_x[i - 1] + a
]

(t
b(t[i - 1], hat_x[1i - 1]) =

[1 = 1], hat_x[1i - 11)
z[i - 1] = sqgrt_h

}

return (tibble (t, hat_x))

Now the runs can be plotted.

a. Make our run:

run <- euler_maruyama (100, 0, 4, 0.1, a2, b2)
Graph the result:
run |>

ggplot () +

geom_line (aes (t, hat_x), 1, "blue")
theme_minimal ()
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100.1

100.0

hat_x

99.9

b. Make our run:

run_01 <- euler_maruyama (100, 0, 4, 0.01, a2, b2)

Graph the result:

run_01 |>
ggplot () +
geom_line (aes (t, hat_x), 1, "blue") +
theme_minimal ()
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100.0

hat_x

99.9

The Vasicek model of interest rates {r;} is a stochastic differential equation:
dry = a(b—ry) dt + o dW,

Forrg = 0.4,a = 0.1, b = 0.05, and o0 = 0.05, simulate the Vasicek model three times
using the Euler-Maruyama method over times [0, 3] and plot the results on the same graph.
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Chapter 24

Multidimensional Brownian Motion

Question of the Day

Suppose that there are two stocks that have value S; and W) after one year. Both stocks
start with price $100 at time o. They follow geometric Brownian motion with means
0.07 and 0.08, and volatilities 0.1 and 0.15 respectively. Moreover, the first stock pays a
continuous dividend of 0.03 and 0.04. The instantaneous correlation of the stocks is 50%.
After one year, a European spread call with strike price $1 pays

(S — Wy —1)*.

The risk free interest rate is 0.02.
How much should this call option be worth at time 0?

Summary

Continuous dividends reduce the share price by —dS; dt in GBM.

The risk free rate of return r is the amount of return given by investments that
are 100% safe. It appears in the risk neutral equivalent martingale measure as an r dt
term.

If Z1, Z are iid standard normals, then (Z1, pZ; + sqrt(1 — p?)Z3) has marginals
that are standard normals and correlation p.

If Z1, Z are iid standard normals and BBern(p), then (Z1, BZ1 + (1 — B)Z3) have

marginals that are standard normals and correlation p.

If 2z = (Z1,...,Z,) are iid standard normals then for an n x n matrix A, AZ has
marginals that are normally distributed, and correlation matrix ¥ = AAT.

Given a positive definite matrix ¥, finding A so that AA” = ¥ can be accomplished
with the Cholesky decomposition algorithm.
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So far, the derivatives under consideration have has prices that depended on only one
asset. In practice, there are derivatives whose price depends on two or more assets. An
example is a spread call. When this call is exercised, it returns the difference in value
between a pair of stocks minus the strike price. Of course, the bearer would only exercise
the option if this was a positive amount. That makes the value of the call at its exercise
time ¢ would be

max(S’t—Wt—K,O) == (St—Pt—K)+

if the stock prices at time ¢ were S; and P,, with strike price K.

The Question of the Day includes stock prices that are correlated, as well as paying
continuous dividends and now there is a risk free rate for those who are investing their
money in 100% risk free assets. Each of these effects must be incorporated into our model.

24.1  GBM with Continuous dividends

In the Question of the Day, the stocks are following continuous Brownian motion, but
they are also converting part of their value into money. When a company pays out part
of the company value to owners of a share of stock, this is called a dividend. Payment of
dividends to the bearer of a share of stock reduces the share value.

For instance, if a company had total worth M, and paid out 3% of its worth as dividends
to shareholders, the company would be worth (1 — 0.03) M after that. Assuming a simple
situation where all shares of stock were equal, the price of the shares would fall from S to
(1 -0.03)M.

To keep things easy, the dividends in the question of the day are being paid out continu-
ously. Therefore, the GBM for S} is

dSt = St [(,u - d) dt+0’th],

where d is the rate of the continuous dividends.
The risk free neutral equivalent martingale measure ignores the average grown in the
stock u, but not the continuous dividends.

ds; = St[—d dt+o th],

24.2  Risk free measure

When money is placed in 100% safe investments, it will still continue to grow, typically
because the investments are immune to inflation, and having the money allows a bank to
make investments of its own. The rate of return on money placed in risk free investments
is called the risk free rate of return, and is usually denoted r. Investments that are risk free
are referred to as the money market.

Money in a risk free investment grows as follows:

th = T’Mt dt.

If r is positive, then the money grows exponentially. If r is negative then run for the hills.
When r < 0 you are in a deflationary economy where saving costs you money over time.
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In the version of GBM with risk free return, the risk free rate of return matches that of
the money market. That is,

dS;k = St [(’I” — d) dt+0’th],

24.3 Correlated random variables

Since Wy ~ N(0, t), simulation of W; for one of the stocks in the Question of the Day is
easy. However, this stock has instantaneous correlation with another stock. When dealing
with only two normal random variables, making them correlated is straightforward.

To make two vectors in R? with angle 6 between them, start with two points P; = (1,0)
and P, = (0, 1). Then the points P; and

P3; = Py cos(0) + sin(6) P,

have angle § between them.

P2
0.9
P 3
0.6
>
0.3
0.0 P 1
0.0 0.3 0.6 0.9 1.2
X

A similar rule holds for standard normal random variables and correlation, where

cos(f) = p is the correlation, and sin(f) = /1 — p2.

Definition 58
Let Z; and Z; by iid N(0, 1). Then

(Z1, pZ1 + sart(1 — p*) Za)

are bivariate normal random variables with correlation p.

Proof. Let (Y1,Y3) = (Z1, pZ1 +sart(1 — p?) Zs). Then Y; is standard normal by the rules
for scaling and adding normal random variables. Also:

E[V1Y2] = E[pZ} +sqrt(1 — p*) Z125] = p,
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which completes the proof.
O

For the Question of the Day, one stock price can be found by using W; = Z; and the
other can use By = pZ; + sqrt(1 — p?)Z5 to simulate the correlated stock prices.

Instaneous correlation

This can be taken down to the level of two Brownian motions if the entire path is needed.

Definition 59
Say that Weiner Processes W; and B; have instantaneous correlation p if

th . dBt =p dt.

Then the change in two standard Brownian motions can be built as follows. For a change
in time h,

1. Draw Z1, Z5 iid N(0, 1).

2. Let €1 < Zysqrt(h).

3. Let €g < [pZ1 + sqrt(1 — p?)Zs] - sart(h).

Note that by the properties of scaling and adding random variables,

€1 ~N(0,h), ez ~ N(0,[p* + (1 = p*)]h) = N(0, h)
and
Elerea] = sart(h)psqrt(h)E[Z7] = ph.

Correlated normal random variables in higher dimensions

In higher dimensions, there is the correlation matrix for any vector (X1, ..., X,,) of random
variables.

Definition 60
Given random variables X7, ..., X,,, the correlation matrix is an n X n matrix X
where

Zij = COI‘(XZ', Xj)

Because of the properties of correlation, the matrix 3 will always be real, symmetric,
and positive definite. This is useful for the following reason

Fact 38
For any real symmetric positive definite matrix ¥, there exists a real lower triangular

matrix L such that
»=LL".

The Cholesky decomposition algorithm can then be used to find L in O(n?) time.
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So the steps to generate a multivariate normal with mean o and correlation matrix 3 are
as follows.

1. Find the Cholesky decomposition ¥ = LLT.
2. Generate 71, ..., Z, standard normals.

3. Return LZ.

Note that for the two dimensional case:

(9
v=() i)

24.4 Correlated Brownian motion in R

and

For the European spread in the Question of the Day, the estimation can be done as follows.

spread_option <-

function ( 1, 1, 1, 100, 100,
0.02, 0.07, 0.08, 0.1,
0.15, 0.03, 0.04, 0.50) {

z1l <— rnorm (N)

z2 <— rnorm(N)

h <- T /N

sqrt_h <- sqgrt (h)

epsilonl <- zl1 % sqgrt_h

epsilon2 <- (rho * zl1 + sqrt(l - rho"2) *x z2) % sqgrt_h

x1 <- (r - dl - (sigmal”2 / 2)) = T +
sigmal % sum(epsilonl)
X2 <— (r — d2 - (sigma2”2 / 2)) = T +

sigma2 % sum(epsilon?2)
S1I_T <- S1_0 * exp(x1)
S2_T <= S2_0 % exp(x2)
return (max(c(0, S1_T - S2_T - K)) * exp(-r * T))

Now run the simulation.
trials <— 1073
res <- replicate(trials, spread_option())

mean (res)
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## [1] 4.862715
sd(res) / sqgrt(length(res))

## [1] 0.2265141

For higher volatilities, the spread is likely to be greater, making the option more valuable.

trials <— 1073

res <- replicate(trials,
spread_option(l, 1, 1, 100, 100, 0.06, 0.7,

0.8, 0.2, 0.3, 0.03, 0.04,

0.5))

mean (res)

## [1] 10.57536

sd(res) / sqgrt(length(res))

## [1] 0.44422

Suppose that there are two stocks that have value S; and W after one year. Both stocks
start with price $100 at time o. They follow geometric Brownian motion with means
0.07 and 0.08, and volatilities 0.1 and 0.15 respectively. Moreover, the first stock pays a
continuous dividend of 0.03 and 0.04. The instantaneous correlation of the stocks is 50%.
After one year, a European spread call with strike price $1 pays

(S —Wip—1)*".

The risk free interest rate is 0.02.
How much should this call option be worth at time 0?
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Worked problems

1.1: Given U a uniform over [0, 1], that is, a standard uniform, create a random variable
Y that is a function of U such that

1
E[Y] = / 23 dx.
0
Solution Since the density of a uniform over [0, 1] is fi(u) = I(u € [0, 1]),
1
/ 23 dr = / 231(z € [0,1]) doz = E[Y],
0 R
where .

1.3: Consider the integral

2
I:/ s2 ds.
s=0

a) Find a change of variables for s so that the limit of the integral runs from 0 to
1.

b) Find a function A such that for U ~ Unif([0, 1]), E[A(U)] = I.
Solution

a) If w = s/2, then when s = 2 we have w = 1 and s = 0 gives w = 0. Also,
dw = ds/2 so ds = 2 dw and

2 1 1
/ s*ds = / (2w)?(2 dw) = / Sw? dw |,
s=0 w=0 w=0

b) Using our usual approach, this means

E[8U?] =1,

so|h(u) = 8u? |
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1.5:

1.7:

1.9:

2.1:

Given an integral
1
I= / exp(—v/z) dz,
0

what function h(u) has E[h(U)] = I for U a standard uniform?
Solution Because the density of U is fyr(u) = I(u € [0, 1], the function is just

h(w) = exp(—va)|

Write R code to estimate

= /Olexp(—\/i) do

with seed 123456 using 10° samples. Hint: look up (or use your favorite search
engine) to find out the functions in R to take the square root function and apply the
exponential function to numbers.

Solution This could be done with

exp (—sgrt (runif (1075))) [|> mean ()

If U ~ Unif([0, 1]), what is E[V/U|?

Solution This is

E[VU] :/R\/ﬂﬂ(ue [0,1]) du

= / u/? du
u€(0,1]

u??/(3/2)|5
—2/3,

or[ 0.6666... |

Two useful symbols in BIgX are _ for subscripts and ~ for superscripts. For instance,
x~3 becomes 2°, and x 7 becomes x7. Use IKIEX and braces { and } to make the
following.

a.iEQ.

b. 273,

C. 4.

d. xq1s.

Solution a. This can be done with x~2 .
b. This can be done with x~{-3} .

c. This can be done with x 4 .

d. This can be done with x {a + Db} .
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2.3: The \ frac command in KIEX creates fractions. For instance, \frac{3} {4} pro-
duces

3

4

Write KX code to create
T+ X2 + T3

3

Solution This could be done with \[ \frac{x 1 + x 2 + x 3}{3} \].

=7.3.

2.5: The \int command makes integrals in KIEX. For instance, \int 075 x*2 dx =
125 /3 could be used to make

5
/ 2% dr = 125/3.
0

Write KIEX code to make the following output

1
/ 1— 22 dx.
—1

Solution This could be done with \int_ {-1}71 1 - x*2 dx. .

3.1: Find the following.
a) #({a,b,c,d}).
b) #({2,4,6,...,100}).
c) £([3,6]).
d) ¢((—16,16)).

Solution
a)
b)
c)
d)
3.3: For W with density 12s%(1 — s)I(s € [0, 1]), what is P(W > 1/2)?

Solution This is

P(W >1/2) :/ 2(1 — 8)I(s € [0,1]) ds

/ 1252 (1—3s)ds

210 ‘ 253



Mark Huber | Monte Carlo Methods

3.5: Given X has unnormalized density g(s) = exp(—3s)I(s > 0), find the normalized
density of X.

Solution To find the normalizing constant, we integrate g from —oo to oo:

/ " exp(—3s) ind(s > 0) ds — /0 ” exp(—3s) ds

—00
o0

=1/3.
0

exp(—3s)
- -3

We divide the unnormalized density by 1/3 to get
fx(s) = 3exp(=3s)I(s > 0).

4.1: Suppose we want to estimate

I :/ 3x2 dz.
z€]0,2]

a) Using Us ~ Unif([0, 2]), find hy such that E[ho(Us) = I].

b) Transform the integral using s = x/2 into an integral over [0, 1], and then find
h1 such that E[hy(U;)] = I where Uy ~ Unif([0, 1]).

Solution

a) Us has density (1/2)I(s € [0, 2]), so ha should be

ha(z) = 622|.

b) Using s = x/2 we have ds = (1/2) dx, or 2 ds = dz. Hence

I= / 3(25)%(2) ds = / 2452 ds.
s€[0,1] s€[0,1]

Hence | hq(s) = 2452,

(One check on your answers: if U ~ Unif([0, 1]), then 2U; ~ Us. So hg should be

22 = 4 times h;.)
1
I:/ 7 dx.
R 1 —+ x

a) Say Y ~ Cauchy, so fy(s) = [(7/2)(1 + s?)] L. Find a function h(Y") such
that E[h(Y)] = I.

b) Use Wolfram Alpha to find the maximum value of 2(Y) for Y € R.

4.3: Consider the integral
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4-5:

4.7:

4-9:

Solution

a) The importance sampling framework gives:

oY) _ (A+YHt  1(r/2)(1+Y?)

A A e G e I U G

b) The maximum value of h(Y) is

~(1+v2) ~[3792]

Suppose SD(X) = 3.2 and X, ..., X are iid as X. What is the standard deviation

of
X1+ + X,

10

Solution The standard deviation of the sample average goes down as the square
root of the number of samples. Therefore it is

SD(X) 3.2
= 2= ~[ro11]
V10 V10

Estimate [, exp(—2/2) dx using T ~ Exp(1) and importance sampling with 1000
samples.

Solution The following does the steps, calculate h(T") for " ~ Exp(1), then replicate
the draws 1000 times, finally create a tibble with the mean and standard deviation.
# First, make the function to generate the random exponential
and run it through the function

w <= function() {

u <— rexp(l)

return (exp(u — u”(3/2)))

}

# Next, replicate the results
res <— replicate (1000, w())

# Make the tibble to store the statistics of the results
tibble (

a = mean (res),

b = sd(res) / sqgrt(length (res))
)

The answer from my run is approximately | 0.900 + 0.011 |,

Write R code to estimate fol exp(y/x) dz using 1000 draws. Estimate the error and
report your answer in the form a £ b.

Solution
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# First generate from the random variable whose mean equals
the answer we are looking for:
res <— exp(sqgrt (runif (1000)))

#Next find the mean:
mean (res)
## The output is 1.981654

# Finally find the error:
sd(res) / sqrt (length(res))
## The output is 0.01445422

Therefore the result is | 2.021 £+ 0.014 |.

5.1: Let Y ~ Exp(2).
a. Set up the integral for the fourth moment of Y.
b. Solve the integral using WolframAlpha.
Solution a. Given the density of Y is 2 exp(—2y)I(y > 0), the integral is

/ 2y* exp(—2y) dy |
0

b.  Using WolframAlpha call integrate 2#y~4*exp(-2*y)from 0 to
infinity the answer is 3/2, or | 1.500 |to 4 sig figs.

5.3: Suppose X has mean 4.1 and standard deviation 1.2, and X1, ..., Xjg are iid X. Let
Y = (X1+“'+X10)/10

a) Find E[Y].
b) Find SD[Y].
Solution

a) The mean of a sample average is just the same as the original random variable,

b) The standard deviation of a sample average is the original standard deviation
divided by the square root of the number of terms in the average. So this is

1.2
— = __0.3794. .
v 10

5.5: Let U ~ Unif([0, 1]) (so it has density fi7(u) = I(u € [0, 1]). Find the ith moment
of U.

Solution This is

E[U] = /Ruiﬂ(u € [0,1]) du = /Olui du =

U
1+ 1

o |i+1
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6.1: Write a Monte Carlo algorithm in R to estimate P(U; + - - - + Ug > 5) where the U;
are iid Unif([0, 1]).

Solution This can be accomplished with

mc <-= function () {
return (sum(runif (6)) >= 5)
}
results <— replicate (1076, mc())
print (mean (results))

6.3: Suppose we model Uy, ..., U, given parameter ¢ as iid Unif([0,0]). Given
Ui,...,U,, our test statistic is

T = min{Uy,...,U,}
We are trying to test if # = 10, and we consider high values of T" to be evidence
against this hypothesis.
a) If n = 8, what is the p-value for a test statistic of 4? (Calculate this value
exactly as a probability.)

b) Use R to test your last answer to the last part by writing a function to generate
variates from 7', and then use Monte Carlo to estimate the p-value.

Solution

a) The goal here is to find the probability that the minimum of 8 standard uniforms
is greater than 4. This is:

P(min{Uy,...,Us} > 4) =P(U; > 4,...,Usg > 4)
=P(U; > 4)8
= ((10 — 4)/10)°
~ [0.01679. ]

b) The following code:

results <— replicate (1076, (min(runif (8))*10) > 4)
print (mean (results))
print (sd(results) /sqgrt (length (results)))

does the trick. When I ran it, it returned 0.01683, of course every time you run
it you will get a slightly different answer.

7.1: Suppose P(A = —1) = 0.6 and P(A = 1) = 0.4. Find a function h(u) such that
h(U) ~ Awhen U ~ Unif([0, 1]).

Solution Using the ITM gives

| A(u) = (=DI(U < 0.6) + (U > 0.6)}.

214 ‘ 253



Mark Huber | Monte Carlo Methods

7.3:

7-5:

For U ~ Unif([—1, 1]), find the density of U2
Solution First let’s find the cdf of U2. Since U? > 0, for a < 0, P(U? < a) = 0.
Fora > 0,
P(U? < a) = B(|U] < Va)
=P(—va <U < Va)
= (1/2)2v/al(a < 1) +I(a > 1).

So the cdf is \/all(a € [0,1]) + I(a > 1). Differentiating then gives

fu2(a) = (1/2)a?1(a € [0,1)).

Note that

Find a function g such that g(U) has density

fs) = (1/s*)(s > 1).
assuming U ~ Unif([0, 1]).
Solution First we find the cdf:

cdf(a) = /a (1/5*)I(s > 1) ds.

Fora < 1 thisiso, fora > 1,

Setting 1 — 1/X = U gives X = 1/(1 — U). So we could use

(90w = /(1 —w)]

but we could also use g(u) = 1/usince U ~ 1 —U.

: Suppose that the function mc draws numbers uniform from {—5, —4,...,4,5}. Write

an AR code in R that makes a function mc that draws uniformly from {—1,0, 1}.
Solution Such code looks like

mc2 <— function() {
repeat {
X <= mc ()
if ((X >= -1)*(X <= 1) == 1) return (X)

215 253



Mark Huber ‘ Monte Carlo Methods

8.3: The function rexp (1, 2) draws a single exponential random variable of rate 2. Use
AR to build a function mcexp in R that draws from an exponential random variable
of rate 2 conditioned to lie in [0.5, 1.5].

Solution The following code uses the while function rather than repeat. Both
are equivalent, but the structure is slightly different. In a while loop, the condition

is first evaluated, and then the statement following the while is run, and the process
starts over.

exp_cond <— function() {
accept <— FALSE
while ('laccept) {
x <— rexp(l, 2)
accept <- (x > 0.5) & (x < 1.5)
}

return (x)

8.5: Write pseudocode to draw (X,Y) ~ Unif(Q2), where Q is the trangular region
connecting (0,0), (0,1), (1,1).

Solution The following code does this.

upper_triangle <— function() {
accept <— FALSE
while ('laccept) {
point <- runif (2)
accept <— point[2] > point[1]
}
return (point)

}

9.1: The following code uses the inverse transform method to draw a sample uniformly
from
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mc <-= function () {
u <= runif (1)
return (1/u)

}

Write R code that uses this function (together with AR) to draw a sample from
unnormalized density

gx(@) = —51(r > 1)

Solution Note that gx () < fx(z)forallz > 1. So we must accept adraw A ~ fx
as coming from gx (z) with probability
gx(4) _ (1/A**)I(A > 1)

) iz ATz,

mc2 <— function() {
acceptflag <— FALSE
while (lacceptflag) {
X <= mc ()
u <= runif (1)
acceptflag <— u < x*(-0.5)
}

return (x)

}

9.3: Suppose that I have the ability to draw Y from the following density
gy (1) =il(i € {1,2,3}),
and U from Unif([0, 1]).

a) Create the most efficient AR algorithm for drawing from
gx (i) = [(1+12)/2J1( € {1,2,3}).

b) What is the expected number of times through the repeat loops for your AR
algorithm?

Solution

a) The acceptance probabilities are

gx(1) 1 gx(2) _3/2 gx(3) _ 2

gv(1) 1 gy(2) 2 gy(3) 3

so all are are most 1. So the AR method just will test if a standard uniform is at
most gx(Y) /gy (V).
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AR
1) Repeat
2) Draw Y « gy

3) Draw U <« Unif([0,1])
4) UntilU < (14Y)/(2Y)
5) ReturnY

b) Note that gx(7) is unnormalized. The normalizing constant will be
9x(1) +9x(2) +9x(3) = 6.
Hence
P(X=1)=1/6, P(X =2)=2/6, P(X =3) =3/6.
That makes the probability of accepting is
3

1+Y] 1 2 2 3
[ ]- :

+ +34—
2V | 6 2 6 4 6 6

So the expected number of times through the loop will be the inverse of this, or

L =[1333 ]

9.5: Consider the following unnormalized density:
fw(w) = exp(=2)I(w € [0,1]) + exp(—2w)I(w > 1).
Now consider the unnormalized density
fr(t) = exp(=2t)I(t = 0).

Note that for all ¢, f7(t) > fw (t). This looks as follows.

1.00
0.75
$.0.50

0.25
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a) Consider a draw (X, Y') from underneath the density fr. What is the probabil-
ity that this falls underneath the density fy?

b) Write pseudocode for an AR algorithm that draws from W using draws from
T.

Solution

a) This is just the area under fy divided by the area under fr:

_JoTexp(—=2)1(5 € [0, 1]) + exp(—2t)I(¢ > 1) dt
Jo~ exp(—2t) dt
exp(—2)(1 — 0) + exp(—2t)/(—2)[5°
exp(—2t)/(—2)F
_ exp(—2) +exp(—2)/2
1/2

~ exp(-2) =

b) The pseudocode is as follows:

p

AR_two_densities

1) Repeat

2) Draw T ~ fr and U a standard uniform independently
3) UntilU < fu (T)/fr(T)

4) ReturnT

9.7: Suppose the goal is to use draws from unnormalized density
ga(s) = exp(—0.92)[(z > 0)
to draw from unnormalized density
g9B(s) = zexp(—z)I(z > 0)

It is not true that g4(s) > gp(s) for all s > 0, but it is true that for

B 95(s)
m = max )
s:gA(s)>0 gA(S>

it holds that
mga(s) > gp(s).

a) Find m and round up to four sig figs.

b) Write pseudocode for AR for using draws from A to obtain draws from B.
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Solution

a) To find m, let

= sexp(—s + 0.9s) = sexp(—0.1s).

Then
f'(s) = exp(—0.1s) — 0.1s exp(—0.1s) = exp(—0.1s)(1 — 0.1s).

The first factor is always positive, so the slope depends on the sign of 1 — 0.1s.
Since 1 — 0.1s decreases in s, there is a maximum when 1 —0.1s = O or s = 10.
At s = 10, the ratio is 10 exp(—1), and so that is the maximum value.

Finally, 10 exp(—1) rounded up to four sig figs is |3.679 |
b) The pseudocode is then

AR A B

1) Repeat

2) Draw A ~ g4 and U a standard uniform independently
3) UntilU < gp(A)/[3.67994(A)]

4) Return A

9.9: A double exponential random variable of rate A has density

r(t) = 5 exp(-Al]).

Another way to think about it as an exponential of rate A that has a fifty-fifty chance
of being positive or negative. Pseudocode for drawing from this distribution is as
follows.

AR_dblexp_norm

1) Repeat

2) Draw 1" double exponential of rate 1
3) Draw U a standard uniform

4) UntilU < exp(=T2/2+|T|—1/2)

5) ReturnT

Write pseudocode for an acceptance rejection algorithm that uses a double exponen-
tial of rate 1 to make draws using AR from a standard normal with unnormalized
density exp(—z%/2).
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10.1:

10.3:

Solution First, it is necessary to maximize

2
—x%/2
") = exp(—2°/2)
exp(—|z])
By symmetry, the maximum will be the same for > 0 and x < 0. Note for x > 0
r(x) = (1 — x) exp(z — 22/2).

Since the exp(z — 22 /2) part is positive, the slope is controlled by the (1 — ) factor.
This is positive for z < 1, hits zero at x = 1, and is negative thereafter. Hence the
maximum value occurs at z = 1, and r(1) = exp(1/2).

This makes the pseudocode:

random_doubleexponential(\)

1) Repeat

2) Draw T exponential of rate A

3) Draw B a Bernoulli with parameter 1/2
)

4) ReturnTB + (-T)(1 - B)

Suppose the random variables (X1, X2, X3) are multinomial with n = 10 and
(pl,pQ,pg) = (0.2, 0.5,0.3). (So (Xl,XQ,Xg) ~ Multinom(10,0‘2, 0.5, 0.3).)

a) What is the distribution of X;?
b) What is the distribution of (X2, X3) given that X; = 4?

Solution

a) The marginal distribution of X; will be | Bin(10,0.2) |

b) Knowing X; = 4 means that (X3, X3) has 20 — 4 = 16 experiments left.
Renormalizing the probabilities gives (0.5,0.3)/(0.5 4+ 0.3), so

| (X2, X3) ~ Multinom(6, 0.6250, 0.3750) |

Suppose that (X1, X2, X3) are uniform over the permutations of the numbers 1, 2,
and 3.

a) What is the distribution of X7?
b) Give X; = 2, what is the distribution of (X2, X3)?

Solution

a) In a uniform permutation X is equally likely to be any of the elements, so

| X1 ~ Unif({1,2,3}) |
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b) Given X; = 2, the remaining elements are uniform over the remaining ele-
ments. So

‘ (X2, X3) is uniform over {1, 3}. ‘

10.5: Suppose Uy ~ Unif([0,1]) and [U;|Uy,...,U;—1] ~ Unif([0,U;—1]. Write pseu-
docode that takes n as input and returns a random draw from (Uy, ..., U,).

Solution One way to do this is:

Conditional Sampling  Input: n

1) Draw U; < Unif([0, 1))

2) Forifromz2ton

3) Draw U; < Unif([0, U;_1])
4) Return (Uy,...,U,)

11.1: Let Vy, ..., V5 be chosen uniformly from the surface of a 5 dimensional sphere. Using
106 samples, estimate

E[l[VIh]

Z|V|

and report your estimate in a & b form.
Solution This can be accomplished with

one_draw <- function(n = 5) {
initial <- rnorm(n)
z <— initial / sgrt(sum(initial”2))
return (sum(abs(z)))

}

res <— replicate (1076, one_draw())
mean (res)

sd(res) / sqgrt (length(res))

In my run, this gave 1.87473 4 0.00018.

11.3: Use the normal method to estimate what proportion of the Earth’s surface is between
40 and 50 degrees latitude north of the equator. Take 10% samples and estimate your
answer in the form a £ b.

Solution Draw uniformly from the surface of a sphere, then figure out how many
of those points are between 40 and 50 degrees latitude north of the equator.

earth surface lat <-— function() {
init <- rnorm(3)
z <— init / sqrt (sum(init”2))
lat <- acos(abs(z[3])) * sign(z[3]) * 90 / (pi / 2)
return (lat)
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res <— replicate (1076, earth_surface_lat())
mean ( (res > 40) & (res < 50))
sd((res > 40) & (res < 50)) / sgrt(length(res))

In my run, the result was ‘ 0.0614 4+ 0.0003 ‘

11.5: Write code to draw (X, Y") uniformly from the unit circle (the boundary of a ball of
radius 1) in R?. Using 10° draws, estimate P(Y > 0.7), reporting your answer as
a=xb.

Solution Code for this is

unif direction_dim2 <- function() {
theta <— runif(l) * 2 * pi
return (c (cos (theta), sin(theta)))

}

Now to get our results,

res <— replicate (1076, unif direction_dim2 () [2] >= 0.7)
mean (res)
sd(res) / sqgrt (length(res))

The estimate is then [0.2536 = 0.0005 |

11.7: Consider (X, Y") uniform over the unit disc Unif({(z,y) : 2% + y? < 1}). Consider
the distance from the origin R = v X2 + Y2

a) Find, using the properties of uniforms, P(R < 0.3).
b) Find for r € [0,1], P(R < r).
c) Write code to sample from R using the inverse transform method.

d) Draw (X,Y") uniformly from the unit disc by first drawing R using the last
part, and 6 uniformly from o to 7, then converting from polar coordinates to
Cartesian coordinates.

e) Using 10° draws, estimate P(Y > 0.5), reporting your answer as a = b.
Solution
a) The area of the disc of radius 0.3 is (1/2)7(0.3)2, and the area of the whole
disc of radius 1 is (1/2)7(1)2, so the probability is

(1/2)7(0.3)? 2

——————2- = (0.3)" =0.09000 |.
b) In general, the probability for r € [0, 1] that R < r will be

1/2)mr? 15
1/2)r(1)? )
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12.1:

12.3:

¢) For cdf of R equal to 2, setting U = 2 gives = v/U. So this can be done
with rr <—function () return (sqgrt (runif (1))).

d) Code to do this:

rdraw <— function() {
r <= rr()
theta <= 2 % pi % runif (1)
return(c(r * cos(theta), r * sin(theta)))
}
res <— replicate (1076, rdraw() [2])
mean (res >= 0.5)
sd(res >= 0.5) / sqgrt(length(res))

My run gave answers 0.1950 £ 0.0004.

Consider a 3 by 3 lattice.

a) How many nodes are there in the lattice?

b) How many edges are there in the lattice?

Solution

a) Thereare 3-3 = @ nodes in the lattice.
b) There are 2 - 3 horizontal edges and 3 - 2 vertical edges, for a total of edges.

Using 200 exact draws from the Ising model on a 3 by 3 lattice with = 0.8, find
the average of the h function value. Write your answer as a % b.

Solution The following calculates h(z) for a state = in a matrix variable.

h <- function(x) {
ver <— sum(x[1l: (nrow(x)-1), ] ==
hor <—= sum(x[, 1l:(ncol(x)-1)] ==
return (hor + ver)

}

[2:nrow(x), 1)
[, 2:ncol(x)])

The following uses AR to draw from the Ising model.

ar_ising <— function (beta, k) {

repeat {
x <- matrix(as.integer (runif(k[1l] % k[2]) > 0.5),
nrow = k[1])
u <— runif (1)
if (u < exp(-beta * (2 * k[1] % k[2] - k[1l] - k[2] - h(x)

)))

return (x)
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12.5:

12.7:

13.1:

Okay, now let’s answer the question!

res <— replicate (200, h(ar_ising (0.8, c(3, 3))))
mean (res)
sd(res) / sqgrt (length(res))

The output in my run was | 8.77 £ 0.15|.

Using 200 draws from the Ising model on a 3 by 3 lattice with 5 = 1.2, find the
average of the h function value. Write your answer as a =+ b.

Solution Given the functions from the last problem, this can be done with:

res <— replicate (200, h(ar_ising (1.2, c(3, 3))))
mean (res)
sd(res) / sqgrt (length(res))

The answer in my run was 10.36 £ 0.14.

For state space [0, 1], consider X = (X3, ..., Xj0) with unnormalized density

gx(.%'l,xg, - ,.’Elo) =x1 + 229 + --- 4+ 10x1p.

In R, this density can be computed using:

g <— function (x) {
return(sum(1:10 * x))

}

Using uniform draws over the state space in AR, write a function in R to draw from
this distribution.

Solution The unnormalized density of U uniform over [0, 1]!° is one times the
indicator that it is in the state space. The greatest value that g can take on is
14+2+4---410=(10)(11)/2 = 55. Hence the following code does the trick.

example_ar <- function () {
a <— FALSE
while ('a) {

x <= runif (10)
u <= runif (1)
a <- u < g(x) / 55

}

return (x)

Consider the update function on state space {0, 1,...,n — 1} so that either adds 1 or
subtracts 1 mod n with probability 0.3, and with probability o.4 stays where it is. Let

f(u) =I(u>0.7) — I(u < 0.3),
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and
O(a,u) = @+ f(u) = nl(z + f(u) = n) +nl(x + f(u) = ~1).
Suppose n = 10.

a) Write an R function that takes a state x, standard uniform u, and n and returns
¢(z,u) over {0,...,n —1}.

b) Given Xy = 0, find X 1000 times, and report an estimate for E[X o] as
a=+b.

Solution

a) This can be done as follows.

ring step <- function(x, u, n = 10) {
f u<= (u>0.7) - (u< 0.3)
return(x + £ u - n * (x + £ u == n) +
n~ (x + fu==-1) )

}

b) First, implement one draw from Xqg.

ring draw_end <- function () {
x <= 0
u <= runif (100)
for (i in 1:100)
X <— ring step(x, uli])
return (x)

}

Now to estimate E[ X 0]

res <— replicate (1000, ring_draw_end())
mean (res)
sd(res) / sqgrt (length(res))

One run of this code returned | 4.54 £ 0.09 |.

13.3: Suppose {X;} is a Markov chain has a stationary distribution over {0, 1,2}1° that
is uniform over states with Zgl X; < 7. Steps in the chain connect any states,
and the chain is aperiodic. What can be said about the limiting distribution of the
Markov chain, and how do you know this?

Solution The limiting distribution is also over states with Zgl X; <.
This follows from the ’ Ergodic Theorem for finite state Markov chains ‘

14.1: Consider the transposition chain. Suppose the goal is to use this chain to estimate
P(z(1) < z(n)), where x ~ Unif(S,). For n = 10, and ¢t € {10,50,100}, try
running a Markov chain for ¢ burn in steps and ¢ data collecting steps to estimate
this probability.
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Repeat your Markov chain runs 10 times and report your estimate as a & b.
Solution First the update function:

step_trans <- function(x, i, Jj) {
x[e(i, J)] <= x[c(3, 1)]
return (x)

}

Now for the data gathering.

data_trans <—- function(steps, n) {

burnin <— steps
datasteps <—- steps
x <= 1:n
res <— rep(0, datasteps)
i 1 <= floor(runif (burnin) =* n) +
j_1 <—= floor (runif (burnin) * n) +
for (i in l:burnin)

x <— step_trans(x, i_1[4i], j_1I[1
i 2 <- floor (runif (datasteps) =* n)
j_2 <— floor (runif (datasteps) =* n)
for (i in l:datasteps) {

res[i] <- (x[1] <= x[n])

x <— step_trans(x, i_2[i], 3j_2[1i])
}
return (mean (res))

}

The analysis then proceeds as follows.

datal0 <- replicate (10, data trans (10, 10))
data50 <- replicate (10, data_ trans (50, 10))
datal00 <- replicate (10, data_trans (100, 10))

Now get results

n <= c¢ (10, 50, 100),
est_mean <- c (mean (datal(O), mean (data50), mean(datal00)),

est_err <- c(sd(datal0O), sd(datab50), sd(datal00)) / sgrt(n)
est_mean
est_err

Therefore, the answer for this run is as follows:

n =10 at+b=|0.73+0.11
n = 50 a+b=0.540 £ 0.054
n = 100 a+b=0.521+£0.056
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14.3: Suppose that (X,Y) is uniform over the triangle in R? with vertices (0, 0), (0, 1),

and (1, 1).
1.00-
0.75-
>0.50-
0.25-
0.00-
0.‘00 0.‘25 0.‘50 0.‘75 1.‘00

X

a) What is the distribution of X given Y?
b) What is the distribution of Y given X?

Solution

a) Given Y, X runs from o up to Y. Hence

[[X [ Y] ~ Unif([0,Y])]

b) Given X, Y runs from X up to 1. Hence

[V | X] ~ Unif([X,1]) |

14.5: Implement a random scan Gibbs sampler for a Markov chain which is uniform over

10
Oy = {(ggl,__,,xlo) €{0,1,2}': Z:ci < 7}

i=1
as an update function in R that takes as input the current state x, a dimension ¢ in

{1,...,10}, and a standard uniform u and returns the next state of the chain.

Solution Consider changing z;. Then either o, 1, or 2 are viable choices, as long as
it does not make the sum too large. Hence

i~ Unif [ {0,1,2} N | —00,7 =Y
i
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14.7:

14.9:

This can be implemented in R as follows.

step_sum <- function(x, i, u) {
m <— min (2, 7 - (sum(x) - x[i]))
x[1i] <= floor((m + 1) =* u)
return (x)

Continuing the earlier problem, using 1000 burn in and 1000 data gathering steps,
estimate 1%, X; for (X1,..., X10) ~ Unif(Qy0). Repeat your Markov chain 5
times and report your estimate as a + b.

Solution The following code accomplishes this:

sum_data <- function (steps) {

# Initialization

burnin <— steps
datasteps <— steps

x <— rep(0, 10)

res <—- rep(0, datasteps)

# Burnin steps
u_ 1l <= runif (burnin)
i 1 <= floor (runif (burnin) *= 10) + 1
for (i in 1l:burnin)
x <— step_sum(x, i _1[i], u_1[i])

# Data gathering steps
u_2 <- runif (datasteps)
i 2 <- floor (runif (datasteps) = 10) + 1
for (i in l:datasteps) {
res[i] <— sum(X)
x <- step sum(x, i 2[i], u_ 2[i])
}

return (mean (res))

}

Now to run and make estimates.

results <— replicate (5, sum_data(1000))
mean (results)
sd(results) / sgrt (length(results))

One estimate is | 6.159 4= 0.016 |.

Create a random scan Gibbs sampler that has stationary distribution uniform over
the six dimensional unit hypersphere, that is

{(z1,...,26) : 22 +-- -+ 22 <1}
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14.11:

15.1:

Implement your sampler as an R function that inputs the current state x’, a dimension
‘i', a standard uniform ‘u‘, and returns the next state in the Markov chain.

Solution Fix i € {1,...,6}. Given the rest of the x; values for j # 4, z; is uniform
from postive 1 minus the sum of the squares of the rest of the components to the
negative of that number.

This can be implemented in R as follows

step_rs_hypersphere <- function(x, 1, u) {
m <— sqgrt(l - (sum(x"2) - x[1]"2))
x[1] <= 2 * m * u — m
return (x)

Create a deterministic scan Gibbs sampler that has stationary distribution uniform
over the six dimensional unit hypersphere, that is

{(21,...,26) s 2f + - +ai <1}

Implement your sampler step as an R function that inputs the current state ‘x’, a
vector of six iid standard uniforms ‘u‘, and returns the next state in the Markov
chain.

Solution A deterministic scan Gibbs sampler updates all the components in order.

step _ds_hypersphere <- function(x, u) {
m <— rep(0, 6)
for (i in 1:6) {
m[i] <- sgrt(l - (sum(x"2) - x[1]1"2))
x[1] <= 2 * m[i] * ul[i] - m[i]
}

return (x)

Consider an Ising model with state
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15.3:

@00
000
00

Label the node that is in the center of the top row node 2. Suppose a random scan
Gibbs chain selects node 2 to be updated. For § = 1.2, find exactly the probability
that node 2 will be updated by the Gibbs step to have label o.

Solution There is one neighbor of node 2 labeled o, and two neighbors labeled 1.
Hence the probability node 2 will be o will be

exp(l/?)
= __0.2314. ol
)

exp(263) + exp(1f

Consider the following graph. If a random scan Gibbs chain for the Ising model
is run on this graph, what is the maximum number of node labels that need to be
examined to take one step in the chain?
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15.5:

Solution The maximum number of neighbors a node has is this graph is , so that
is how many neighbors need to be examined (at most) to take one Gibbs step in the
chain.

Consider the following unnormalized density for x = (x1,...,x10).
g(z) = (w129 + T2x3 + 2324 + - - + 29710)I(2 € [0,4]'°).

Note that 21 only appears in the density with zg, so suppose a Markov chain is run
where g, x9, and 10 are known at the current state of the chain. Suppose a step is
taken in the Gibbs chain that replaces the tenth component.

For instance, if g(z) = 64.2, [9] = 3.3, and z[10] = 1.2, then setting y; = z; for
i < 10, and y190 = A where A is a random variable, then consider f4(s), the density
of A. Given these values, the sum of the first eight terms in g would be the sum of
all the terms minus the last term, so

8
Z TiTi41

=1

=64.2 — (3.3)(1.2) = 60.24.

so the unnormalized density of A is
gA(ylo) = (60.24 + 3.3y10)]I(y10 S [0, 4])

Give a function h such that for U ~ Unif([0, 1]), h(U) ~ A.
Solution This can be accomplished with the Inverse Transform Method.

First let’s normalize the density:
4
/ (60.24 4 3.3y10) dy10 = 267.36.
0
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15.7:

16.1:

16.3:

Second find the cdf. For a € [0, 4],

1.65a2 + 60.24a
267.36

cdf 4(a) = / (60.24 + 3.3y10) /267.36 dy1 =
0

Third, set this equal to u and solve:

~ 1.65a” + 60.24a

267.36
267.36u = 1.65a2 + 60.24a

1.65a% + 60.24a — 267.36u = 0

Applying the quadratic formula and picking the positive value gives:

_ —60.24 4 1/60.242 + 4(1.65)(267.36)
N 2(1.65)

Continuing the last problem, you need to know g and some of the x; values to
calculate the probabilities for the changed dimension in the Gibbs chain. What is the
largest number of x; values that you need to know?

Solution Since each x; interacts with at most z;_; and z; 1, you need to know the
value of at most | 2 | other components.

Consider taking a asymmetric random walk on the integers mod 5 ({0, 1,2, 3,4}),
using M where P(M = —1) = 0.6 and P(M = 1) = 0.4. So with probability 0.4
add 1 to the current state, and if it reaches 5 replace it with a o. Else (with probability
0.6) add -1 to the current state, and if it reaches -1 replace it with a 4. This chain is
aperiodic and connected.

This chain has a limiting (normalized) distribution. What is it?

Solution  The set of integers mod 5 form a group under addition, and because this
is a random walk on a group, the stationary distribution is always uniform over the

state space. So it is‘ Unif({0,1,2,3,4}) ‘

Again consider the random walk over the integers mod 5 with move
P(M =-1)=06, P(M =1)=0.4.

Implement the chain. Using 10* burnin steps and 10* data gathering steps, estimate
the mean of the limiting distribution.

Solution

A single step in the chain can be implemented as
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16.5:

step_rwmod5 <- function(x, m) {(x + m) %% 5}

This the chain looks as follows.

chain_rwmod5 <- function (steps) {
x <— 0
m_burnin <- 2 % floor(runif (steps) < 0.4) -1
for (i in l:steps) {
x <- step_rwmod5 (x, m_burninfil])
}
m <- 2 % floor(runif(steps) < 0.4) -1
states <- rep (0, steps + 1)
states[1l] <- x
for (i in l:steps) {
states[i + 1] <- step_rwmod5 (states[i], m[i])
}

return (states)

Then the mean can be found as follows:

chain_rwmod5(1074) |> mean()

## [1] 1.9992

Which gives an estimate of the mean of about | 1.999

Suppose that (X,Y) is uniform over the triangle in R? with vertices (0, 0), (0, 1),
and (1,1).
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16.7:

1.00-

0.75-

1, 1)

i 0.50-

c(0

0.25-

0.00 055 &éO Q%S 1.00
c(0, 0, 1)

Write code for one step in a random walk with partially reflecting boundaries over
this region that takes as input the current state and a vector with two components,
and returns the next state.

Solution

This can be done as:

step_triangle <- function (v, m) {
y <— v + m
if ((y[1] >= 0) & (y[2] <= 1) & (y[2] >= yI[1l]))
return (y)
else
return (v)

Returning to the step for the triangle problem from earlier, use 10 replications of
your chain for 10* burnin and data gathering steps to estimate E[X].

Solution

First set up the chain run.

chain_triangle_rwwprb <- function(steps) {
burnin <- steps
datasteps <- steps
x <- c(1, 1)
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16.9:

res <- rep (0, datasteps)
n_1 <- rnorm(burnin)
n_2 <— rnorm(burnin)
for (i in 1l:burnin)
x <- setp_triangle(x, c(n_1[1i], n_2T[1i]1))
n_3 <- rnorm(datasteps)
n_4 <- rnorm(datasteps)
for (i in l:datasteps) {
res[1] <- x[1]
x <—- step_triangle(x, c(n_3[1], n_4T[1i]))
}

return (mean (res))

Now take some data.

res <- replicate (10, chain_triangle_rwwprb (1075))

Summarize the results

mean (res)

## [1] 0.332991

sd(res) / sqgrt(length(res))

## [1] 0.001053154

Therefore the estimate is|0.3329 =+ 0.0011 ‘

Suppose that a Markov chain with state space [0, 10] uses a random walk with
partially reflecting boundaries. The move is a beta with parameters 3 and 3 minus
0.5. Note that the density of this move is

f(s) = (1/2+ 5)%(1/2 — 5)1(s € [-0.5,0.5]),

which is symmetric around o (since f(s) = f(—s).)

This Markov chain has a limiting distribution equal to the stationary distribution.
What is this distribution?
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Solution  The stationary (and limiting distribution) for a random walk on a group
with partially reflecting boundaries is always uniform. So the stationary distribution

is| Unif([0, 10]) |

17.1: Consider the density proportional to
gx(x) = sin(z) cos(z)I(z € [0,7/4]).

a) For a product slice sample, what are the distributions of Y7, Y3, and Y3 given
X7

b) For a product slice sample, given (Y71, Y2, Y3), what is the distribution of X?

Solution

a) There are three factors sin (), cos(z), and cos(z) in g x. Hence the distributions
are

[Y1|X] ~ Unif([0, sin(x)])
[Y2|X] ~ Unif(]0, cos(x)])
[Y3|X] ~ Unif(]0, cos(x)])

b) For X to be valid given (Y7, Y, Y3), it must hold that

Y7 <sin(X)
Ys < cos(X)
Y3 < cos(X).

Since sin(x) is an increasing function over the range of z, so is it inverse. Since
cos(z) is a decreasing function over the range of x, its inverse is also decreasing.

Hence
asin(Y;) < X
acos(Y2) > X
acos(Ys) > X.
This means

|[X[V3, Y3, V3] ~ Unif([asin(Y} ), min(acos(Y5), acos(¥3)))). |

17.3: Going back to
gx(2) = sin(z) cos(x)?I(x € [0,7/4]),

implement an update function that takes as input the current state x and a vector of
four numbers u and returns the next state after updating Y7, Y5, Y3, X in that order.
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17.5:

Solution

This can be done with:

step_trig_pss <- function(x, u) {
y <— uf[l:3] * c(sin(x), cos(x), cos(x))
x <— uf[4] » (min(acos(y[2:3])) - asin(y[1l])) + asin(yI[1l])

return (x)

Use 1000 steps of burnin and data gathering Markov chain Monte Carlo to estimate
the mean of a draw from the density sin(z) cos(x)?I(z € [0,7/4]). Replicate 10
times and report the estimate as a £ b.

Solution  Here is the chain running code:

chain_trig_pss <- function(steps) {
x <-= 0
m_burnin <- replicate(steps, runif (4))
for (i in l:steps) {
x <- step_trig_pss(x, m_burnin[,i])
}
m <- replicate(steps, runif(4))
states <- rep (0, steps + 1)
states[l] <- x
for (i in l:steps) {
states[i + 1] <- step_trig_pss(states[i], m[,1])
}

return (states)

Here then is the replication:

res <- replicate (10, chain_trig pss(1000) [|> mean())
mean (res)

## [1] 0.6651807

sd(res) / sqgrt (length(res))
## [1] 0.005680378
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So the final estimate is | 0.665 £ 0.006 |.

18.1: Consider the unnormalized density

gx(s) = exp(—s>/?)I(s > 0).

a) Write code for a Metropolis-Hastings step with proposal move ¥ = X + M

where M ~ Unif([—2, 1]).

b) Use your code with 10 replications of 1000 burnin and data gathering steps to

estimate E[X]. Report your result as a + b.

Solution

a) This step can be taken as follows. Note that it is important to take the absolute

value of a to make sure that raising to the 3/2 power.

step_hastings_cont <- function(x, m, u) {

y <— X + m

r <- function(a, b)
(a >= 0) * exp(—abs(a
(b >=a - 2) * (b <=

if (u < r(y, %) / r(x,
return (y)

else

~

)3/ 2)) x (1L / 3) %
a + 1)
v))

return (x)

b) Create the chain.

chain_hastings_cont <- function (steps) {

burnin <- steps
datasteps <- steps

x <=0

ml <- 3 % runif (burnin) - 2

ul <- runif (burnin)
for (i in 1:burnin) {
x <- step_hastings_cont (x, ml[i], ulf[il])
}
res <- rep (0, datasteps)
m2 <- 3 x runif (datasteps) - 2
u2 <- runif (datasteps)
for (i in l:datasteps) {
x <- step_hastings_cont (x, m2[i], u2f[i])
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res[i] <- X
}

return (mean (res))

Now collect data.

set.seed (572727427)
res <- replicate (10, chain_hastings_cont (1000))

Finally, analyze the data.
tibble (

mean (res),
sd(res) / sqrt(length (res))

## # A tibble: 1 x 2

## est_mean est_sd
#4# <dbl> <dbl>
#4# 1 0.658 0.0215

In my run, the answer is | 0.657 £ 0.021 |
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Chapter B

Probability review

B.1 Elementary facts

Combinatorics The number of ways to arrange n objects in order is n factorial:
nl=n(n—-1)(n—-2)---1,

where 0! = 1. The number of ways to choose r objects from n objects is:

()=

For ny + n2 + ... n, = n, the number of ways to choose n; objects of type 1, ny objects
of type 2, up to n, objects of type r, is

( n > B n!
N1, Ny oy Ny nilng! -+ n,!

Definitions These are the basic definitions for talking about probability.

The set of outcomes is called the sample space or outcome space, and is usually denoted
Q.

An event is a subset E of {2 such that P(F)) is defined (an event is also sometimes called
a measurable subset). When A is an event, the complement of A is also an event. Also if
A1, Ag, ... is a sequence of events, then U2, A; is also an event. (Any set of events with
these properties is called a o-algebra or o-field.)

PP is a function that given an event A, outputs the probability that the outcome lies in A.

The events A and B are disjoint or mutually exclusiveif AN B = ().

Measures A probability is a special type of measure that obeys the following four rules:
1: For event B, 0 < IP(B) (probabilities are nonnegative real numbers)

2: P(()) = 0 (the probability nothing happens is zero).
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3: For By, B, ... disjoint events,
oo
P (U Bi) = Y P(By).
i=1

4: P(Q) = 1 (the probability that something occurs is 1).

Simple facts Some basic facts follow from these rules.
Prop: 0 <P(A) <1.
Prop: P(AC) =1—P(A).
Prop: P(AUB) =P(A) +P(B) —P(AB)
Prop: P(0) = 0.

A word about intersection For sets A and B, the intersection of A an B can be denoted
AN B, AB, or A, B. All of these notations mean the same thing:

ANB:={z:x € Aandz € B}.
Conditional probabilities
If P(B) > 0, the conditional probability of A given B is

P(AB)
P(B)

P(A|B) =

Bayes’ Formula If F, ..., F}, are disjoint and U}"_, F; = (2, then

P(A|F)P(F;)
(A|F)P(Fy) + ... P(A|F,)P(F,)’

P(F;|A) = P

Random variables A random variable is a function of the outcome. The values the
random variable can take on are called states, and lie in the state space. In other words, a
random variable is a function from the sample space to the state space.

For a discrete random variable X € {z1,x2,z3, ...}, the expected value of X is

E[X] = inP(X = 1;).

For a continuous random variable X € R with density fx, the expected value of X is

E[X] = /OO sfx(s) ds.

—0o0

For any two random variables X and Y,
E[X +Y] =E[X]+E[Y].
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For two random variables X and Y are uncorrelated if and only if
E[XY] =E[X]E[Y].

Independent random variables (see below) are always uncorrelated, but uncorrelated
random variables are not always independent!

Independence
Two events A and B are independent if

P(AB) =P(A)P(B) « P(A | B) =P(A).
Two random variables X and Y are independent if for any event X € Aand Y € B,

P(X € AY € B)=P(X € A)P(Y € B).

B.2 A short guide to solving probability problems
Equally likely outcomes. If all outcomes are equally likely,

number of outcomes in F/

P(E) =

 total number of outcomes’

Trick #1: Use complements. It is often easier to find P(A®) then P(A), remember

P(A) =1 — P(A%).

Trick #2: Use independence to turn intersections into products. If we want the
probability of the intersection of Ay, ..., A,, then we can break it apart only when the
events are independent:

P(A1 - Ay) =P(A1)P(A2) - P(4y).

Trick #3: Use disjointness to turn unions into sums. If the events Ay,..., A, are
disjoint,
P(A U---UA,) =P(A4)) + P(A2) +...P(Ay).

Trick #4: Use Principle of In/Ex to deal with any union. = We can always break apart
unions of events A; ... A, using the Principle of Inclusion/Exclusion, which we use most
often when n = 2:

P(Al U Ag) = P(Al) + P(Ag) - P(AlAQ)

Its easier to say the Principle of Inclusion/Exclusion in words than symbols: the probability
of any event occurring is the sum of the probabilities that one event occurs minus the sum
of the probabilities that 2 events occur plus the sum of the probabilities that 3 events occur
etcetera until we reach the probability that all events occur.
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Trick #5: Use De Morgan’s Laws to covert unions and intersections. Convert back
and forth between union and intersection using De Morgan’s Laws:

(A1Ay - A)¢ = A U AT - U AY,
(AfUAU---UA,)Y = ATAT - AC.

Trick #6: Use Bayes’ Formula to reverse conditional probabilities. If you know
P(A | F;) for all i as well as P(F;), and want P(F; | A), then use Bayes’ Formula.

Trick #7: Acceptance/Rejection Method 1 Suppose that we perform a trial which if
successful, has outcomes Ay, ..., A,. If we fail, then we try again until one of A; through
A,, occur. Then

P(A; occurs on final trial) = P(A; on first trial | first trial a success)
~ PP(A; on first trial)
~ P(first trial a success)

Trick #8: Acceptance/Rejection Method 2  The other way to tackle acceptance rejec-
tion problem is using infinite series. Remember, when |r| < 1,

=0

Common errors Some things to watch out for! Events use complements, unions,
and intersections. A statement like P(A)¢ doesn’t make sense, since P(A) is a number.
What was probably meant was P(A®). Similarly, use +, - and times for numbers like
probabilities, and never for sets. We haven’t defined A + B, what was probably intended
was P(A) + P(B).

Steps to a problem: If you don’t know how to get started on a problem, the following
steps usually can get you going:

(1) Write down the sample space. Even if you can’t write down the whole sample space,
write down some of the outcomes. Make up symbols, like H for head or T for tails or W
for win and L for a loss to make writing outcomes easier.

(2) Write down the events that you are given probabilities for, and the event that you
are trying to find the probability of (the target event).

(3) See if you can express the target event in terms of union, intersection, or complements
of the events that you are given (here is where the five tricks come into play).

Simple checks on an answer:  Make sure that your final probabilities lie between o
and 1. If you know that a set of probabilities must add to 1, then check by actually adding
them. If you have a simple intuitive reason to believe that A is more likely than B, check

that P(A) > P(B).
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B.3 A short guide to counting

Order matters When order matters, then there are n! ways to order n objects.

Thinking about n choose k.  There are several ways of thinking about (Z), all of which
are equivalent.

1: It’s the number of the ways to choose a subset of size &k from a set of size n.

2: It’s the number of ways to order a group of letters A... AB ... B where A appears
k times and B appears n — k times.

3: Given n spaces, it’s the number of ways to mark % of those spaces in some way.

4: It’s the number of ways of choosing k out of n trials to be successful.

Multichoosing Now ( is similar, in that it generalizes (Z) This is because

nl,...,n,«)
(%) = (,"4)- The number n multichoose ny, na, . .., n, counts the following.

(1) It’s the number of the ways to choose a partition of a set of size n where the first
subset has size n1, the second ng, etcetera.

(2) It’s the number of ways to order a group of letters Ay ... AjAs... As... A,... A,
where A; appears n; times.

(3) Given n spaces, it’s the number of ways to mark n; of those spaces with a 1, ng
spaces with a 2, up to n, spaces with n,.

(4) Suppose each trial has r different outcomes. Then its the number of ways of choosing
n; trials to have outcome 1, ny trials to have outcome 2, up to n, trials having outcome 7.

When all else fails. Almost any problem can be written as a problem with ordering.
If you are uncomfortable with n choose r or can’t figure out what should be ordered and
what shouldn’t then give everything in your problem a number and order everything.

For example, what’s the probability of choosing a given five card hand from a set of 52
cards? One way: number of outcomes is 1, total number of outcomes is (552), )

1
(5)
Another way: number all the cards 1, ..., 52 and order them in any one of 52! ways. Then

any outcome where the five cards we are interested in appear first in the ordering of cards
works. There are 5! ways to order these cards and (52 - 5)! ways to order the remaining 47
cards, so the total number of outcomes is 5!(47!), so

547!

]P’(hand) = W 5

which is the same answer as the other way.
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Another example: given a random ordering of the letters MIIIISSSSPP, what’s the
probability that it spells MISSISSIPPI? Think about numbering every symbol, so we are
ordering x1 22232425 T6X728L9T 10211, Where x1 = M, x5 through x5 equal I, etc. Then
the total number of outcomes is 11!. The number of outcomes that are successful? Well
has to be in first position, z2, 3, x4 and x5 have to occupy positions 2, 5, 8, and 10 (which
they can do in 4! ways, there are 4! ways to order the x; that equal .S and 2! ways to order
the x; that equal P. So

11414121

P(MISSISSIPPI) = —

B.4 How to find E[X]

Step 1 Find the values that X can take on with positive probability (this is called
the positive support of X). If X is discrete, this will be either a finite number of values
{z1,...,x,} or a countable number of values {x1, zo, ...}. If X is continuous, it could be
an interval or union of intervals, like (0, c0) or (3,4) U [10, 15).

Step 2 Use the right formula. If X is discrete, then E[X] is the sum over all values of
x such that P(X = z) > 0 of the outcome times the probability. So if X € {z¢, z1,...},
then

EX]= Y apla)=) =PX =)
=1

z:p(x)>0

If X is continuous with density fx then

IE[X]:/Rme(:c) dx.

If X € {0,1,2,3,...}, then the Tail Sum Formula gives an alternate way to find the
expected value:

oo
E[X] =) P(X >i).
1=0
If X is continuous and P(X > 0) = 1, then the Tail Sum Formula is

E[X] = /OOO P(X > x) dx.

Conditional expectation To find E[A|B], treat B as a constant and calculate the
probability in the exact same way as above. For all random variables A and B:

E[E[A|B]] = E[A].
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Note: If we wish to find E[g(X )] then use

EgX)]= Y g@PX=a)=3 gla)P(X = ),
=1

zP(X=x)>0

and

EMXﬂz/M$h@M&

R

For uncorrelated random variables, E[ X Y| = E[X]|E[Y]. Independent random variables
are uncorrelated, but uncorrelated random variables might not be independent.
Some properties of expected value:

« For any two random variables (correlated or uncorrelated) E[X +Y] = E[X]| +E[Y].

B.5 How to find V(X)
Method 1: Use

Method 2: Use

Some properties
« For uncorrelated random variables, V(X +Y) = V(X) + V(Y)).

« For random variable X and constant a € R, V(aX) = o?V(X), SD(aX) =
aSD(X).

B.6 Distributions

The distribution of a random variable is a complete listing of P(X € A) for all sets A of
interest. The distribution also referred to as the law of X, and denoted £(X ). When X
and Y have the same distribution, this is denoted

X ~Y, or L(X)=L(Y).

The distribution function of a random variable X (also known as the cumulative distribu-
tion function) is

F(a) =P(X <a).

This is a function that is bounded, that is, it always lies between o and 1. It is also right con-
tinuous, that is if aj, ag, as, . . . decrease and their limit is a, then limit of F'(a;), F'(a2), ...
equals F'(a).

Because of a theorem from measure theory called the Carathéodory Extension Theorem,
knowing F' allows computation of P(X € A) for any A of interest. In particular, if
A = (a,b],then P(X € A) = F(b) — F(a). (Looks a bit like the fundamental theorem of

247 ‘ 253



Mark Huber ‘ Monte Carlo Methods

calculus, which is one reason why F’ is always capitalized when used for the distribution
function.)
More precisely, if F'x is the distribution function of X and Fy is the distribution function
of Y, then
L(X)=L(Y) < Fx(a) = Fy(a) Va.

If X is discrete then the graph of F'(a) will have jumps, if X is continuous then F'(a)
will be continuous. Some more formulas that come in handy:

Pla< X <b) = F(b)—F(a)

Pla < X <) Fb)—F(a) —-P(X =0

Pla<X <b) = F(b)—F(a) —P(X =b)+P(X =aqa)

Pla<X <b) = F(b)—F(a)+P(X =a).
Remember that for continuous random variables P(X = s) = 0 for any s, so the right
hand side of these formula just becomes F'(b) — F'(a). Also for continuous X,

_ dF(a)
f(a’) - da

and

a) = /_; f(a)da

where f(x) is the probability density function (sometimes just called the density) of X.
Finally, say that X7, Xo, ... are independent identically distributed, or iid, if they are
independent and all have the same distribution.

B.7 Discrete distributions

A random variable is discrete if it only takes on a finite or countably infinite number of
values. The distribution of a discrete random variable is also called discrete in this instance.

Uniform Written: Unif({1,...,n}). The story: roll a fair die with n sides.

P(X = i) = 21(i € {1,...,n})

E[X] = n—2&—1
V(X) = (n—1)(n+1)

12
Bernoulli  Written: Bern(p). The story: flip a coin that comes up heads with probability

p, and count the number of heads on the single coin flip. Also, the number of successes in
a single trial where the trial is a success with probability p.
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Binomial Written: Bin(n, p). The story: flip iid coins n times where the probability of
heads is p and count the number of heads. Also, the number of successes in a single trial
where the trial is a success with probability p. Also if X1,..., X, are iid Bern(p), then
X=X+ Xy+...X,, ~Bin(n,p).

=)= (7)-pr 1 € {0

E[X] =np
V(X) = np(1l —p).

Geometric  Written: Geo(p). The story: flip iid coins with probability p of heads and
counting the number of flips needed for one head. Also, the number of trials needed for 1
success when the probability of success at each trial is p and each trial is independent.

Negative Binomial Written: NegBin(r, p). The story: flipping iid coins with probability
p of heads and counting the number of flips needed for r heads to arrive. Also, the number
of trials needed for r successes when the probability of success at each trial is p and each
trial is independent.

Also X = X1 + X5 + ... X, where X are iid and distributed as Geo(p).

per=i) = (1)) - pdo. )
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Hypergeometric Written: Hypergeo(N, m,n). The story: drawing n balls from an
urn holding m green balls and N — m blue balls and counting the number of green balls
chosen.

Gless!

P(X =i) = B ({0,1,...,n})

E[X] = =
V(X) = ]]\\;:Tnp(l—p)-

Zeta Written: Zeta(«). A.k.a. Zipf or power law. The story: things like city sizes and
incomes have Zeta distributions.

P(X =i) = igln({m, )

E[X] = no closed form
V(X) = no closed form.

Special notes: Except for special values of « like 1, we do not have a closed form solution
for the value of C, the normalizing constant. Choose C' so that ) >°; P(X = i) = 1.
Similarly, there are no closed form solutions for E[X] or V(X). These must be evaluated
numerically. When a < 1, E[X] does not exist (or is considered infinite). Similarly, when
a < 2, Var(X) does not exist (or can be considered infinite).

Poisson  Written: Pois(u). The story: given that the chance of an arrival in time ¢
tot + dt is A dt, and n = AT, then this is the number of arrivals in the interval [0, 7.
X1, Xo,...,itis

mZaXXl—i—Xg—i——&—X, < 1.

B.8 Continuous Distributions

A random variable is continuous if P(X = a) = 0 for all a. The distribution of a continuous
random variable is also called continuous.
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Uniform (continuous) Written: Unif(A). The story: a point is uniform over A if for
all B C A, the chance the point falls in B is the Lebesgue measure of B divided by the
Lebesgue measure of A. For general A:

1
" Lebesgue measure of A

f(@) I(z € A)
When A = [a, b], more specifically:

fla) = 2T € (1)

F@):i:ZMmGMﬁD+Mx>®
E[X]:b—ga

—a)?
vx) = =2

Normal Written: N(u, 02). The story: when you sum variables with finite mean and
standard deviation together, they are well approximated by a normal distribution.

Addition of normals. Adding independent normal random variables gives back another
normal random variable. If X; ~ N(u;, 022), and X = X; + Xo + ...+ X, then

X (S et
7 7
For X,Y independent N (0, 1) random variables, the joint distribution of (X,Y) is
rotationally invariant.

Normal random variables are symmetric around p, and so ®(z) = 1 — ®(—x).

Exponential Written: Exp(\). What it is: when events occur continuously over time at
rate A, this is the time you have to wait for the first event to occur.
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f(t) = Ae MI(t € (0,00))
o< (37 221
E[X] = %
V(X) = %

B.9 How to use the Central Limit Theorem (CLT)
The CLT says that if X, X, ... are identically distributed random variables and Z,, =

X7 +...X,, then
Z, —E[Z,
lim P ﬁga = ®(a).

We use it as an approximation tool for Z = X + ... X,;:

P (Z_E[Z] < a> ~ ®(a).
V(2)

Often we are interested in approximating the probability of things like P(Z < b) where
Z = X1 +...X,. This takes two steps.

Step 1 If Z is integral, apply the half integer correction. So instead of P(Z < i) we write
P(Z <i+1/2).

Step 2 Subtract off E[Z] and divide by the square root of Var(Z). So

P(Z<b+05)=P (Z—E[Z] b+0.5—IE[Z]>

D - D)

Step 3 Apply the CLT and say

P(Z < D)~ ® b+ 0.5 —E[Z]
N V(2) '
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